欢迎访问沈阳真空杂志社 Email Alert    RSS服务

VACUUM ›› 2024, Vol. 61 ›› Issue (5): 74-79.doi: 10.13385/j.cnki.vacuum.2024.05.10

Previous Articles     Next Articles

Comparative Study of Low Pressure Sensing Performance for Carbon Nanotube and Zinc Oxide Nanorod Field Emitters

PENG Wen-guang, TU You-qing, CHEN Gui-tao, QIAN Wei-jin, DONG Chang-kun   

  1. Wenzhou Key Laboratory of Micro-nano Optoelectronic Devices, Wenzhou University, Wenzhou 325035, China
  • Received:2024-05-06 Online:2024-09-25 Published:2024-10-10

Abstract: A field emission low pressure gas sensing technique based on gas adsorption effects was developed. In this work, CNTs were grown directly on Ni alloy substrates by thermal chemical vapor deposition (CVD) method, ZnO nanorodes were prepared by the hydrothermal method, and the Al-N co-doped ZnO nanorodes were further synthesized by CVD. Then the field emission and low pressure N2 sensing performances were investigated for CNT and ZnO nanorode field emitters. The results show that CNT emitters present good field emission performance with the turn-on field of 1.99 V/μm, while ZnO emitters show higher turn-on field of 14.9 V/μm. With the doping of Al-N elements, the field emission performance is improved significantly with the turn-on field of 8.9 V/μm. In the pressure range of 10-4-10-7 Pa, the CNT cathodes demonstrate best sensing behavior, and the sensing current rises up to 350% within 5 min test under N2 pressure of 10-4 Pa. The pristine ZnO emitters show almost no sensing effect, but Al-N co-doped ZnO emitters display decent sensing behavior, indicating that Al-N doping effectively improves the gas sensing performance resulting from the addition of active sites on the ZnO emitter.

Key words: field emission, carbon nanotube, zinc oxide, low pressure, N2 sensing

CLC Number:  TP212;TB772;TB383

[1] SU J, GUO D Z, XING Y J, et al.Improved field emission properties of MgO-nanoparticle-doped carbon nanotube films and their application in miniature vacuum gauges[J]. Physica Status Solidi(a),2013,210(2):349-355.
[2] MEYYAPPAN M.Carbon nanotube-based chemical sensors[J]. Small, 2016, 12(16): 2118-2129.
[3] SEIYAMA T, FUJIISHI K, NAGATANI M, et al.A new detector for gaseous components using zinc oxide thin films[J]. Journal of the Society of Chemical Industry Japan, 1963, 66(5): 652-655.
[4] HOSSEINI Z S, MORTEZAALI A.Room temperature H2S gas sensor based on rather aligned ZnO nanorods with flower-like structures[J]. Sensors and Actuators B: Chemical, 2015, 207: 865-871.
[5] 王杰, 康颂, 董长昆.微型碳纳米管低压传感器工作性能研究[J].真空, 2021, 58(1): 1-5.
[6] 康颂, 董长昆, 张纯. 基于多壁碳纳米管场发射与吸附原理的压力传感技术研究[J]. 真空与低温, 2019, 25(4): 237-242.
[7] 董长昆, 康颂, 何剑峰, 等. 基于碳纳米管场发射的新型压力传感技术[C]//中国电子学会真空电子学分会,微波电真空器件国家级重点实验室.中国电子学会真空电子学分会第二十一届学术年会论文集.温州大学微纳结构与光电器件研究所, 2018: 846.
[8] NILSSON L, GROENING O, EMMENEGGER C, et al.Scanning field emission from patterned carbon nanotube films[J]. Applied Physics Letters, 2000, 76(15): 2071-2073.
[9] LEE J, JUNG Y, SONG J, et al.High-performance field emission from a carbon nanotube carpet[J]. Carbon, 2012, 50(10): 3889-3896.
[10] DRESSELHAUS M S, DRESSELHAUS G, JORIO A.Raman spectroscopy of carbon nanotubes in 1997 and 2007[J]. The Journal of Physical Chemistry C, 2007, 111(48): 17887-17893.
[11] DRESSELHAUS M S, JORIO A, HOFMANN M, et al.Perspectives on carbon nanotubes and graphene Raman spectroscopy[J]. Nano Letters, 2010, 10(3): 751-758.
[12] SAITO R, HOFMANN M, DRESSELHAUS G, et al.Raman spectroscopy of graphene and carbon nanotubes[J]. Advances in Physics, 2011, 60(3): 413-550.
[13] KAYASTHA V K, ULMEN B, YAP Y K.Effect of graphitic order on field emission stability of carbon nanotubes[J]. Nanotechnology, 2007, 18(3): 035206.
[14] ELETSKII A V, BOCHAROV G S.Emission properties of carbon nanotubes and cathodes on their basis[J]. Plasma Sources Science and Technology, 2009, 18(3): 034013.
[15] 康颂. 基于场发射原理的碳纳米管真空系统压力传感技术研究[D]. 温州: 温州大学, 2019.
[16] DONG C K, LUO H J, CAI J Q, et al.Hydrogen sensing characteristics from carbon nanotube field emissions[J]. Nanoscale, 2016,8(10): 5599-5604.
[17] GONZÁLEZ-BERRÍOS A, PIAZZA F, MORELL G. Numerical study of the electrostatic field gradients present in various planar emitter field emission configurations relevant to experimental research[J]. Journal of Vacuum Science & Technology B, 2005, 23(2): 645-648.
[18] DEAN K A, CHALAMALA B R.The environmental stability of field emission from single-walled carbon nanotubes[J]. Applied Physics Letters, 1999, 75(19): 3017-3019.
[19] SEMET V, BINH V T, VINCENT P, et al.Field electron emission from individual carbon nanotubes of a vertically aligned array[J]. Applied Physics Letters, 2002, 81(2): 343-345.
[20] PURCELL S T, VINCENT P, JOURNET C, et al.Hot nanotubes: stable heating of individual multiwall carbon nanotubes to 2000 K induced by the field-emission current[J]. Physical Review Letters, 2002, 88(10): 105502.
[1] CHEN Ya-wei, DONG Ming-liang, QIAN Wei-jin, TU You-qing, HUANG Wei-jun, DONG Chang-kun. Synthesis of ZnO Nanorod Arrays Grown on Different Substrates and Their Field Emission Performances [J]. VACUUM, 2023, 60(6): 32-36.
[2] ZHU Wei, LU Qun-xu, QIAN Wei-jin, HUANG Wei-jun, DONG Chang-kun. Study on a Novel Micro-Focus Electron Source for Carbon Nanotubes [J]. VACUUM, 2022, 59(1): 48-53.
[3] WANG Jie, KANG Song, DONG Chang-kun. Study on Working Performance for Low Pressure Carbon Nanotube Micro Sensor [J]. VACUUM, 2021, 58(1): 1-5.
[4] YANG Wei, WEI Xian-long. Review on On-Chip Electron Sources [J]. VACUUM, 2020, 57(1): 1-10.
[5] YANG Wei, WEI Xian-long. Review on On-Chip Electron Sources [J]. VACUUM, 2019, 56(6): 16-26.
[6] HE Jian-feng, HUANG Wei-jun, DONG Chang-kun. A New Carbon Nanotube Field Emission Ionization Gauge With Coaxial Electrodes [J]. VACUUM, 2019, 56(6): 12-15.
[7] LI Jian, TONG Hong-hui, DAN Min, JIN Fan-ya, WANG Kun, CHEN Lun-jiang. Applications and research progress of field emission electron sources [J]. VACUUM, 2019, 56(3): 27-31.
[8] ZHOU Bin-bin, ZHANG jian, HE Jian-feng, DONG Chang-kun. Carbon nanotube field emission cathode based on direct growth technique [J]. VACUUM, 2018, 55(5): 10-14.
[9] LI De-tian, CHENG Yong-jun, ZHANG Hu-zhong, SUN Wen-jun, WANG Yong-jun, SUN Jian, LI Gang, . Preparations and applications of carbon nanotube field emitters [J]. VACUUM, 2018, 55(5): 1-9.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LI De-tian, CHENG Yong-jun, ZHANG Hu-zhong, SUN Wen-jun, WANG Yong-jun, SUN Jian, LI Gang, . Preparations and applications of carbon nanotube field emitters[J]. VACUUM, 2018, 55(5): 1 -9 .
[2] ZHOU Bin-bin, ZHANG jian, HE Jian-feng, DONG Chang-kun. Carbon nanotube field emission cathode based on direct growth technique[J]. VACUUM, 2018, 55(5): 10 -14 .
[3] CHAI Xiao-tong, WANG Liang, WANG Yong-qing, LIU Ming-kun, LIU Xing-zhou, GAN Shu-yi. Operating parameter data acquisition system for single vacuum pump based on STM32F103 microcomputer[J]. VACUUM, 2018, 55(5): 15 -18 .
[4] LI Min-jiu, XIONG Tao, JIANG Ya-lan, HE Yan-bin, CHEN Qing-chuan. 20kV high voltage based on double transistor forward converter pulse power supply for metal deburring[J]. VACUUM, 2018, 55(5): 19 -24 .
[5] LIU Yan-wen, MENG Xian-zhan, TIAN Hong, LI Fen, SHI Wen-qi, ZHU Hong, GU Bing. Test of ultra high vacuum in space traveling-wave tube[J]. VACUUM, 2018, 55(5): 25 -28 .
[6] XU Fa-jian, WANG Hai-lei, ZHAO Cai-xia, HUANG Zhi-ting. Application of chemical gases vacuum-compression recovery system in environmental engineering[J]. VACUUM, 2018, 55(5): 29 -33 .
[7] XIE Yuan-hua, HAN Jin, ZHANG Zhi-jun, XU Cheng-hai. Discussion on present situation and development trend of vacuum conveying[J]. VACUUM, 2018, 55(5): 34 -37 .
[8] SUN Li-zhi, YAN Rong-xin, LI Tian-ye, JIA Rui-jin, LI Zheng, SUN Li-chen, WANG Yong, WANG Jian, . Research on distributing law of Xenon in big accumulation chamber[J]. VACUUM, 2018, 55(5): 38 -41 .
[9] HUANG Si, WANG Xue-qian, MO Yu-shi, ZHANG Zhan-fa, YING Bing. Experimental study on similarity law of liquid ring compressor performances[J]. VACUUM, 2018, 55(5): 42 -45 .
[10] CHANG Zhen-dong, MU Ren-de, HE Li-min, HUANG Guang-hong, LI Jian-ping. Reflectance spectroscopy study on TBCs prepared by EB-PVD[J]. VACUUM, 2018, 55(5): 46 -50 .