VACUUM ›› 2021, Vol. 58 ›› Issue (1): 1-5.doi: 10.13385/j.cnki.vacuum.2021.01.01
• Measurement and Control • Next Articles
WANG Jie, KANG Song, DONG Chang-kun
CLC Number:
[1] Heo S H, Ihsan A, Cho S O.Transmission-type microfocus x-ray tube using carbon nanotube field emitters[J]. Applied physics letters, 2007, 90(18): 183109. [2] Teo K B K, Minoux E, Hudanski L, et al. Microwave devices: carbon nanotubes as cold cathodes[J]. Nature, 2005, 437(7061): 968. [3] Vancil B, Brodie I, Lorr J, et al.Scandate dispenser cathodes with sharp transition and their application in microwave tubes[J]. IEEE Transactions on Electron Devices, 2014, 61(6): 1754-1759. [4] 单美琴, 刘泳良. 行波管制管过程中因真空失效的种类及原因分析[J]. 电子质量, 2017(11): 31-33. [5] 张文丙, 张钰, 郑赟. 吸附真空泵在微波管中的应用[J]. 科协论坛(下半月), 2008(9): 47-48. [6] Górecka-Drzazga A.Miniature and MEMS-type vacuum sensors and pumps[J]. Vacuum, 2009, 83(12): 1419-1426. [7] Brown K B, Ma Y, Allegretto W, et al.Microstructural pressure sensor based on an enhanced resonant mode hysteresis effect[J]. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena, 2001, 19(5): 1828-1832. [8] Miyashita H, Esashi M.Wide dynamic range silicon diaphragm vacuum sensor by electrostatic servo system[J]. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena, 2000, 18(6): 2692-2697. [9] Li D T, Cheng Y J, Yan F, et al.Latest developments of ionization gauge[J]. Shanghai Measurement and Testing, 2012, 39(1): 2-14. [10] Wilfert S, Edelmann C.Miniaturized vacuum gauges[J]. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 2004, 22(2): 309-320. [11] Lee N S, Chung D S, Han I T, et al.Application of carbon nanotubes to field emission displays[J]. Diamond and Related Materials, 2001, 10(2): 265-270. [12] Dong C, Myneni G R.Carbon nanotube electron source based ionization vacuum gauge[J]. Applied Physics Letters, 2004, 84(26): 5443-5445. [13] Kaul A B, Manohara H M.Carbon Nanotube Vacuum Gauges With Wide Dynamic Range[J]. IEEE Transactions on Nanotechnology, 2009, 8(2): 252-257. [14] Liu H, Nakahara H, Uemura S, et al.Ionization vacuum gauge with a carbon nanotube field electron emitter combined with a shield electrode[J]. Vacuum, 2009, 84(5): 713-717. [15] Choi I, Woo S.Application of carbon nanotube field emission effect to an ionization gauge[J]. Applied Physics Letters, 2005, 87(17): 173104. [16] 董长昆, 赵洋洋. 基于气体吸附的碳纳米管场发射低压氢传感技术[J]. 真空, 2017, 54(5): 1-6. [17] 康颂, 董长昆, 张纯. 基于多壁碳纳米管场发射与吸附原理的压力传感技术研究[J]. 真空与低温, 2019, 25(4): 237-242. [18] Zhang J, Li D, Zhao Y, et al.Wide-range vacuum measurements from MWNT field emitters grown directly on stainless steel substrates[J]. Nanoscale Research Letters, 2016, 11(1): 5. [19] Dong C, Gupta M C.Influences of the surface reactions on the field emission from multiwall carbon nanotubes[J]. Applied Physics Letters, 2003, 83(1): 159-161. [20] Dean K A, Chalamala B R.The environmental stability of field emission from single-walled carbon nanotubes[J]. Applied Physics Letters, 1999, 75(19): 3017-3019. [21] Semet V, Binh V T, Vincent P, et al.Field electron emission from individual carbon nanotubes of a vertically aligned array[J]. Applied Physics Letters, 2002, 81(2): 343-345. [22] Grujicic M, Cao G, Gersten B.Enhancement of field emission in carbon nanotubes through adsorption of polar molecules[J]. Applied Surface Science, 2003, 206(1-4): 167-177. [23] Purcell S T, Vincent P, Journet C, et al.Hot nanotubes: Stable heating of individual multiwall carbon nanotubes to 2000 K induced by the field-emission current[J]. Physical Review Letters, 2002, 88(10): 1055021-1055024. |
[1] | BAI Biao-kun, CHEN Shu-ping, CHEN Lian, JIN Shu-feng, SHI Qing-zhi, MENG Yue. Experimental Study on Vacuum Adsorption Characteristics of Molecular Sieves at Liquid Nitrogen Temperature [J]. VACUUM, 2021, 58(1): 45-50. |
[2] | SUN Lu-yao, CHEN Guang-qi. Experimental Study on Adsorption Isotherms of Activated Carbon at Low Temperature and Pressure [J]. VACUUM, 2020, 57(6): 69-74. |
[3] | ZENG Huan, DENG Jia-liang, SUN Zhi-he. Design of the 250mm Caliber Cryopump [J]. VACUUM, 2020, 57(2): 13-16. |
[4] | YANG Wei, WEI Xian-long. Review on On-Chip Electron Sources [J]. VACUUM, 2020, 57(1): 1-10. |
[5] | LI Xiao-feng, HUANG Qiang-hua, CHEN Guang-qi, HE Xiao-dong, ZHU Ming. Simulated Experimental Study on Vacuum Life of Cryogenic Insulated Cylinders [J]. VACUUM, 2020, 57(1): 56-61. |
[6] | HE Jian-feng, HUANG Wei-jun, DONG Chang-kun. A New Carbon Nanotube Field Emission Ionization Gauge With Coaxial Electrodes [J]. VACUUM, 2019, 56(6): 12-15. |
[7] | YANG Wei, WEI Xian-long. Review on On-Chip Electron Sources [J]. VACUUM, 2019, 56(6): 16-26. |
[8] | LI Jian, TONG Hong-hui, DAN Min, JIN Fan-ya, WANG Kun, CHEN Lun-jiang. Applications and research progress of field emission electron sources [J]. VACUUM, 2019, 56(3): 27-31. |
[9] | LI Xiao-feng, CHEN Guang-qi, BAI Yang, REN Gai-hong. Experimental study on adsorption characteristics of molecular sieve under low temperature and low pressure [J]. VACUUM, 2019, 56(2): 45-49. |
[10] | SHEN Fu-bo, WANG Jie, ZHAI Yue, ZHOU Zhi-peng. Light shell design of low temperature adsorption bed and its optimization [J]. VACUUM, 2018, 55(6): 42-44. |
[11] | LI De-tian, CHENG Yong-jun, ZHANG Hu-zhong, SUN Wen-jun, WANG Yong-jun, SUN Jian, LI Gang, . Preparations and applications of carbon nanotube field emitters [J]. VACUUM, 2018, 55(5): 1-9. |
[12] | ZHOU Bin-bin, ZHANG jian, HE Jian-feng, DONG Chang-kun. Carbon nanotube field emission cathode based on direct growth technique [J]. VACUUM, 2018, 55(5): 10-14. |
|