欢迎访问沈阳真空杂志社 Email Alert    RSS服务

VACUUM ›› 2024, Vol. 61 ›› Issue (6): 33-37.doi: 10.13385/j.cnki.vacuum.2024.06.06

• Vacuum Acquisition System • Previous Articles     Next Articles

Simplified Design Calculation and Numerical Verification of H-type Reinforcing Ring for Cylindrical Vacuum Vessel

ZHAO Yan-yi1,2, SHI Cheng-tian1,2, LI Shao-jie1,2, SUN Song-gang1,2, WANG Fei1,2, LI Can-lun1,2   

  1. 1. Shanghai Yuda Industrial Co., Ltd., Shanghai 200240, China;
    2. Shanghai Satellite Equipment Research Institute, 200240, China
  • Received:2024-01-18 Online:2024-11-25 Published:2024-11-29

Abstract: H-type reinforcing ring is widely used in vacuum vessel because of significant improvement of the critical instability pressure of the cylinder. However, the design based on GB 150-2011 standard requires repeated trial calculations and the process is cumbersome. In this paper, the simplified design calculation formula of H-type reinforcing ring for cylindrical vacuum vessel was deduced, and the accuracy of the simplified formula was verified by establishing a numerical calculation model. Finally, through the analysis of the design calculation example, the selection design of the structural parameters of H-type reinforcing ring and its influence on the stability and economy of cylindrical vacuum vessel were studied. The results show that the simplified design calculation formula of H-type reinforcing ring deduced in this paper could meet the requirements of structural stability, and the design and check of H-type reinforcing ring could be carried out quickly by the design curve at a time. Increasing the height and thickness of H-type reinforcing ring could improve the critical instability pressure of the cylinder. Compared with rectangular reinforcing ring, the use of H-type reinforcing ring could reduce the amount of material and improve the economic benefits. The research results can be used to guide the design and calculation of H-type reinforcing ring of cylindrical vacuum vessel and provide theoretical reference for structural integrity evaluation.

Key words: cylindrical vacuum vessel, H-type reinforcing ring, simplified design, buckling analysis, numerical verification

CLC Number:  TB756

[1] 张世一, 陈丽, 齐晓军, 等. KM5B空间环境模拟试验设备研制[J]. 航天器环境工程, 2016, 33(4): 434-438.
[2] 彭光东, 齐晓军, 陈丽. KM5A空间环模试验设备研制[J]. 航天器环境工程, 2010, 27(4): 485-488.
[3] 景加荣. F3H红外定标试验用空间环模设备[J].航天器环境工程, 2008, 25(4): 369-372.
[4] 祁松松, 倪俊, 李卓慧, 等. 超大型真空容器大门设计及优化研究[J]. 真空, 2023, 60(5): 81-85.
[5] 何绍栋, 王华新, 刘宝瑞, 等. 某大型真空容器结构稳定性分析与试验评价[J]. 真空科学与技术学报,2023, 43(5): 410-417.
[6] BOUTAGOUGA D, MAMOURI S.Post-buckling analysis of shell-like structures using an implicit dynamic time integration scheme[J]. Multidiscipline Modeling in Materials and Structures, 2023, 19(1): 38-53.
[7] JIAO P, CHEN Z P, MA H,et al.Buckling behavior analysis of thin-walled cylindrical shell structure under localized axial compression load based on initial imperfection sensitivity[J].International Journal of Structural Stability and Dynamics, 2023, 23(20): 2350197.
[8] LI Z, SHEN K C, ZHANG X H,et al.Buckling of composite cylindrical shells with ovality and thickness variation subjected to hydrostatic pressure[J]. Defence Technology, 2022, 18(5): 862-875.
[9] YANG L C, QIU T, DONG Y Y.Buckling analysis of cylindrical shells with variable thickness subjected to non-uniform axial compression by establishing a novel quadratic perturbation technique[J]. International Journal of Structural Stability and Dynamics, 2022, 22(12):2250120.
[10] 臧少锋, 钱才富. 超大型真空容器非线性稳定分析[J]. 北京化工大学学报(自然科学版), 2009, 36(5): 88-91.
[11] 全国锅炉压力容器标准化技术委员会. 压力容器:GB 150-2011[S]. 北京:中国标准出版社, 2011.
[12] 邢晓林. 基于MATLAB算法的外压容器环向加强圈优化设计[J]. 化工机械, 2008(4): 202-206.
[13] 尤少炜, 朱春禹, 李永刘, 等. 基于FEM理论和ANSYS软件对加强圈对外压圆筒临界失稳压力的影响分析[J]. 化工设计通讯, 2016, 42(5): 237.
[14] 师家安, 普琼仙. 外压管道加强圈设计计算方法及优化设计[J]. 有色金属设计, 2017, 44(1): 27-31.
[15] 陈冰冰, 徐佳伟, 徐伦, 等. 外压圆筒小加强圈设计的改进方法[J]. 压力容器, 2022, 39(5): 34-45.
[16] 詹晶, 惠虎, 董樑. 加强圈包角对罐车容器外压稳定性影响研究[J]. 压力容器, 2016, 33(11): 33-38.
[17] 郑英杰, 付冰洋, 段滋华. 外压容器加强圈断开后加强效果分析[J].石油化工设备, 2014, 43(2): 44-48.
[18] 李莉. 外压圆筒设置加强圈的简便计算[J]. 化工设备与管道, 2007, 44(5): 21-23.
[19] 林占生, 刘树高. 外压容器加强圈的设计计算[J]. 石油化工设备, 1990, 19(1): 36-37.
[20] 聂洪轩, 马继红, 王晶. 外压容器加强圈简化计算[J]. 黑龙江科技信息, 2008(13): 209.
[21] 王际强. 外压圆筒加强圈设计[J]. 压力容器, 2005,22(10): 28-30.
[1] QI Song-song, NI Jun, LI Zhuo-hui, SHI Cheng-tian, FENG Lei, CHEN Hong-bin, LI Can-lun. Research on Gate Design and Optimization of Super Large Vacuum Vessel [J]. VACUUM, 2023, 60(5): 81-85.
[2] MA Qiang, SUN Zu-lai, ZHANG Zhe-kui, MU Xin, LI Jian-jun, WANG Qiu-bo. Vibration Simulation Analysis of Ingot Withdrawing Mechanism of Large Power Vacuum Cold Hearth Furnace [J]. VACUUM, 2021, 58(5): 104-109.
[3] WANG Ying, XING Wang, MING Yue, ZHU Yi-ming. Numerical Strength Simulation of Steel Strip Winding Cylinder of Isostatic Pressing Container [J]. VACUUM, 2021, 58(3): 82-85.
[4] WANG Ying, MING Yue, DAI Yu-bo, CHE En-lin, WANG Biao. Structure Optimization of Graphite Furnace for Vacuum High Temperature Heat Treatment Furnace [J]. VACUUM, 2020, 57(6): 27-30.
[5] SUN Zhi-ming, HE Chao, ZHANG Ying-li, ZHU Zhi-peng, YUE Xiang-ji, ZHANG Bin, BA De-chun. Design and finite element analysis of large-scale horizontal vacuum container [J]. VACUUM, 2019, 56(2): 26-30.
[6] LIU Lin, FANG You-wei, GAO Cha, WANG Jian, LUO Ji-run. Development of the Diamond Energy Transfer Window for 140 GHz Cyclotron [J]. VACUUM, 2024, 61(3): 100-104.
[7] WANG Bao-lai, SU Ning, CHEN Ding, CHE En-lin, LIU Jun, WANG Zhen. Design Analysis of External Mechanized Chamber Heat Treatment Furnace [J]. VACUUM, 2024, 61(3): 79-83.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LI De-tian, CHENG Yong-jun, ZHANG Hu-zhong, SUN Wen-jun, WANG Yong-jun, SUN Jian, LI Gang, . Preparations and applications of carbon nanotube field emitters[J]. VACUUM, 2018, 55(5): 1 -9 .
[2] ZHOU Bin-bin, ZHANG jian, HE Jian-feng, DONG Chang-kun. Carbon nanotube field emission cathode based on direct growth technique[J]. VACUUM, 2018, 55(5): 10 -14 .
[3] CHAI Xiao-tong, WANG Liang, WANG Yong-qing, LIU Ming-kun, LIU Xing-zhou, GAN Shu-yi. Operating parameter data acquisition system for single vacuum pump based on STM32F103 microcomputer[J]. VACUUM, 2018, 55(5): 15 -18 .
[4] LI Min-jiu, XIONG Tao, JIANG Ya-lan, HE Yan-bin, CHEN Qing-chuan. 20kV high voltage based on double transistor forward converter pulse power supply for metal deburring[J]. VACUUM, 2018, 55(5): 19 -24 .
[5] LIU Yan-wen, MENG Xian-zhan, TIAN Hong, LI Fen, SHI Wen-qi, ZHU Hong, GU Bing. Test of ultra high vacuum in space traveling-wave tube[J]. VACUUM, 2018, 55(5): 25 -28 .
[6] XU Fa-jian, WANG Hai-lei, ZHAO Cai-xia, HUANG Zhi-ting. Application of chemical gases vacuum-compression recovery system in environmental engineering[J]. VACUUM, 2018, 55(5): 29 -33 .
[7] XIE Yuan-hua, HAN Jin, ZHANG Zhi-jun, XU Cheng-hai. Discussion on present situation and development trend of vacuum conveying[J]. VACUUM, 2018, 55(5): 34 -37 .
[8] SUN Li-zhi, YAN Rong-xin, LI Tian-ye, JIA Rui-jin, LI Zheng, SUN Li-chen, WANG Yong, WANG Jian, . Research on distributing law of Xenon in big accumulation chamber[J]. VACUUM, 2018, 55(5): 38 -41 .
[9] HUANG Si, WANG Xue-qian, MO Yu-shi, ZHANG Zhan-fa, YING Bing. Experimental study on similarity law of liquid ring compressor performances[J]. VACUUM, 2018, 55(5): 42 -45 .
[10] CHANG Zhen-dong, MU Ren-de, HE Li-min, HUANG Guang-hong, LI Jian-ping. Reflectance spectroscopy study on TBCs prepared by EB-PVD[J]. VACUUM, 2018, 55(5): 46 -50 .