欢迎访问沈阳真空杂志社 Email Alert    RSS服务

VACUUM ›› 2025, Vol. 62 ›› Issue (2): 77-85.doi: 10.13385/j.cnki.vacuum.2025.02.12

• Vacuum Metallurgy and Thermal Engineering • Previous Articles     Next Articles

Effect of Micro-Deoxidizing Elements on the Inclusions in Q355B Steel

ZHANG Xiangjun1, LI Tianrui1,2, WU Wenping2, YANG Yong2, CHEN Zhiqiang1, XU Yong1, LU Yong1   

  1. 1. MCC Huatian Engineering & Technology Corporation, Nanjing 210019, China;
    2. School of Metallurgical Engineering, Anhui University of Technology, Ma'anshan 243000, China
  • Received:2024-08-02 Online:2025-03-25 Published:2025-03-24

Abstract: To explore the influence of different types and additive amounts of alloy elements on the morphology, composition, and distribution of inclusions in Q355B steel, different amounts of elements (Ti, Zr, Mg, and Ce) were added individually employing the method of vacuum induction melting. Spectral analyzer, scanning electron microscope, energy dispersive spectrometer, and image analyzer were used to observe and analyze the composition and morphological characteristics of typical inclusions in Q355B deoxidized steels. The results indicate that the addition of deoxidizing elements promotes the presence of MnS in Q355B steel in the form of composite inclusions. MnS+TiN/Ti-O/Al-Si-O, MnS+ZrO2, MnS+Al-Mg-O and MnS+Ce2O3 were formed in Ti-, Zr-, Mg- and Ce-deoxidized steels, respectively. Proper control of the amount (mass fraction)of deoxidizing elements can achieve better control of inclusions. Oxides of Ti or Ce have a better refinement effect on the size of MnS inclusions, while excessive amounts of Zr or Mg can lead to the aggregation of ZrO2 or the formation of MgO+SiO2+MnO composite inclusions, resulting in the formation of coarse inclusions. Additionally, the reasonable range of elemental addition for Q355B steel when using single deoxidizing elements is preliminarily determined. 0.010%Ti, 0.005 2%-0.008 8%Zr, 0.003 2%Mg, and 0.007 1%-0.008 8%Ce are more conducive to the stability of inclusion size as well as the microstructure refinement in Q355B steel.

Key words: Q355B, micro-alloy element, oxide metallurgy, microstructure, inclusion, VIM

CLC Number:  TF76

[1] 张桂营. 坯料尺寸对热轧H型钢生产的影响[J]. 轧钢,2023,40(1):130-134.
[2] 梁云科. 低成本Q355B热轧带钢生产工艺研究与实践[J]. 山西冶金,2022,45(9):79-81.
[3] 吴保桥,汪杰,夏勐,等. 翼缘厚度80~120 mm重型热轧H型钢翼缘变形渗透研究[J]. 轧钢,2021,38(3):47-49.
[4] 吴保桥,彭林,何军委,等. Cr元素及轧后控冷工艺对高强H型钢组织性能的影响[J]. 轧钢,2021,38(4):55-59.
[5] 陈辉,吴湄庄,夏勐,等. Q355ME耐低温角钢边宽冲击韧性分布和显微组织研究[J]. 轧钢,2020,37(5):96-99.
[6] WANG C, WANG G D, WANG Z D, et al.Mechanical properties and transformation behaviors of Ti-Zr killed low-carbon steels with high-temperature hot-rolling process[J]. Steel Research International, 2016, 87(12): 1715-1722.
[7] 王社斌,李佳军,尹树春,等. 微量稀土元素对Q235B钢组织和性能的影响[J]. 材料科学与工艺,2011,19(5):79-84.
[8] 任强,姜东滨,张立峰,等. Q235钢中夹杂物演变规律和生成机理分析[J]. 钢铁,2020,55(7):47-52.
[9] 王皓,智建国,赵鸣,等. Ce对铝脱氧钛合金化IF钢洁净度影响应用研究[J]. 包钢科技,2019,45(6):33-37.
[10] 郭沁怡,宋波,宋明明. Ti、Al、Zr脱氧对中硫非调质钢中硫化物形态的影响[J]. 材料热处理学报,2019,40(2):133-139.
[11] 卢凤飞,杨云清. 利用Nb微合金化及柔性轧制工艺生产低合金Q355B中厚钢板[J]. 河北冶金,2021(4):47-52.
[12] 刘敏,陈万华,吕士迎,等. Ti微合金化Q355B组织和性能分析[J]. 山东冶金,2019,41(6):26-28.
[13] 徐正彪,王延苹,刘瑞刚,等. 提高Q355B热轧H型钢强度的控冷工艺研究[J]. 特殊钢,2022,43(2):51-54.
[14] 汪杰,吴保桥,张建,等. Nb-V、Nb-Ti对重型热轧H型钢强韧性的影响[J]. 中国冶金,2020,30(11):47-52.
[15] 田仲良,王利峰,孙学玉. 热轧Q355B带钢组织及性能稳定生产实践[J]. 山西冶金,2024,47(3):146-147.
[16] 刘洪波,康举,谢荣圆,等. 钢中硫化锰夹杂控制的机理分析与工业实践[J]. 炼钢,2023,39(4):1-12.
[17] 孟军龙. 碳锰钢中MnS夹杂物的控制及应用实践[J]. 大型铸锻件,2021(5):9-12.
[18] 杨泽宇,王敏,李怡宏. 钢中MnS夹杂物对钢质量影响及控制研究进展[J]. 钢铁研究学报,2024,36(6):681-691.
[19] 王超. 氧化物冶金型大线能量焊接用钢组织性能调控与生产工艺研究[D]. 沈阳:东北大学, 2019.
[20] LU J L, CHENG G G, CHEN L, et al.Distribution and morphology of MnS inclusions in resulfurized non-quenched and tempered steel with Zr addition[J]. ISIJ International, 2018, 58(7): 1307-1315.
[21] 鲁金龙,成国光,丘文生,等. 中碳高硫易切削钢中Zr添加对MnS夹杂物形貌特征的影响[J]. 钢铁研究学报,2022,34(9):963-972.
[22] 杨树峰,李京社,朱立光,等. 钢中镁铝尖晶石夹杂物研究现状及发展[J]. 炼钢,2010,26(1):74-78.
[23] 田俊,王德永,屈天鹏,等. Mg处理对X65管线钢中夹杂物的影响[J]. 炼钢,2018,34(5):43-49.
[24] LUO S, SHEN Z S, YU Z M.Effect of Ce Addition on Inclusions and Grain Structure in Gear Steel 20CrNiMo[J]. Steel Research International, 2021, 92(3):2000394.
[25] LU P C, FENG H, LI H B, et al.Cerium addition improves cleanliness and refines microstructure of as-cast high-nitrogen stainless bearing steel. Steel Research International, 2024, 95(3): 2300648.
[1] CHEN Ming, LI Xiangcai, ZHANG Xiaomin, HUANG Shuo, WANG Chong, HU Jun. Effect of P on the as Cast Microstructure and Mechanical Properties of Nickel Based Superalloy [J]. VACUUM, 2025, 62(2): 91-99.
[2] WANG Man, ZHAN Chunming, SHI Guomei, WANG Zhe. Effect of Vacuum Aging Process on Hardness and Microstructure of ZG0Cr17Ni4Cu3Nb and 0Cr17Ni4Cu4Nb [J]. VACUUM, 2025, 62(2): 100-104.
[3] MA Bao-hong, DUAN Hai-xia, DU Xue-feng, SHAO Yu-song, LI Zhen-kai. Research Progress of Influence of Multi-field Coupling on Inclusion Removal in Vacuum Continuous Casting Tundish [J]. VACUUM, 2024, 61(3): 90-95.
[4] JI Jian-chao, YAN Yue, HA En-hua. Effect of Deposition Parameters on Microstructure and Optical Properties of TiO2 Nanofilms [J]. VACUUM, 2024, 61(3): 57-62.
[5] LI Can-min, DONG Zhong-lin, XIA Zheng-wei, ZHANG Xin-feng, WEI Rong-hua. Microstructure and Properties of TiCr-based Nanocomposite Coatings by Plasma Enhanced Magnetron Sputtering [J]. VACUUM, 2024, 61(2): 10-15.
[6] YU Kang-yuan, HE Yu-dan, YANG Bo, LUO Jiang-shan. Effect of Sputtering Voltage on Microstructure and Properties of Cu Foils Deposited by High Power Impulse Magnetron Sputtering [J]. VACUUM, 2023, 60(3): 1-4.
[7] XING Yin-long, WU Jie-feng, PEI Shi-lun, LIU Zhi-hong, LI Bo, LIU Zhen-fei, MA Jian-guo. Vacuum Electron Beam Welding of Semi-Y-state Oxygen Free Copper Plate in Boat Shape RF Cavity [J]. VACUUM, 2022, 59(5): 69-73.
[8] SONG Jing-si, ZUO Ye, YING Bing, LIU Jun, FENG Jun-xiao, TENG Long, LI Yuan-lu, ZHANG Zhe-kui. The Mainstream Structure and Future Development of Vacuum Induction Melting Furnace [J]. VACUUM, 2022, 59(4): 70-75.
[9] LIU Xiao-gong, JIANG Nan, HAO Qi-zan, LUO Liang, SHI Zhen-xue, LUO Yu-shi. Experimental Research on Casting Dimension Effect of Single Crystal Superalloy [J]. VACUUM, 2022, 59(3): 80-85.
[10] CHANG Zhen-dong, DENG Zhong-hua, SUN Rong-zhen, MU Ren-de, HU Jiang-wei. Effect of Matrix Surface Microstructure on the Adhesion of PVD Coating [J]. VACUUM, 2022, 59(3): 52-56.
[11] FU Xue-cheng, WU Li-ying, LUAN Zhen-xing, MAO Hai-ping, WANG Ying. Modification of Tungsten Crucible for Electron Beam Evaporation of Silver Film [J]. VACUUM, 2022, 59(3): 41-45.
[12] BAO Si-ping, ZHAO Yi-hong, ZHOU Xiao-jin, WANG Zi-li, HE Yu-long, GENG Hao-ran, WANG Kai, SHI Min-jie, CHEN Rong-fa. Effect of Vacuum Heat Treatment on the Microstructure and Wear Resistance of 42CrMo Alloy Rotor [J]. VACUUM, 2020, 57(6): 31-34.
[13] ZHAO Xing-wang, LIU Yan-mei, FU He-guo, SHI Ji-peng, GUAN Feng. Research on Microstructure and Mechanical Properties of Laser Butt Welding of Thin TC4 Titanium Alloy [J]. VACUUM, 2020, 57(4): 89-94.
[14] LIU Yan-mei, MIAO Yu-hua, PAN Xin, LIU Biao, WANG Cun-shan, LIN Guo-qiang. Analysis on Microstructure and Properties of Graphite/Ni and Graphene Composite Coatings Fabricated by Laser Cladding [J]. VACUUM, 2020, 57(4): 85-88.
[15] ZHANG Qing-fang, YI Yong, LUO Jiang-shan. Effect of Sputtering Power on Microstructure of Er Thin Films Deposited by Magnetron Sputtering [J]. VACUUM, 2020, 57(3): 17-20.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LI De-tian, CHENG Yong-jun, ZHANG Hu-zhong, SUN Wen-jun, WANG Yong-jun, SUN Jian, LI Gang, . Preparations and applications of carbon nanotube field emitters[J]. VACUUM, 2018, 55(5): 1 -9 .
[2] ZHOU Bin-bin, ZHANG jian, HE Jian-feng, DONG Chang-kun. Carbon nanotube field emission cathode based on direct growth technique[J]. VACUUM, 2018, 55(5): 10 -14 .
[3] CHAI Xiao-tong, WANG Liang, WANG Yong-qing, LIU Ming-kun, LIU Xing-zhou, GAN Shu-yi. Operating parameter data acquisition system for single vacuum pump based on STM32F103 microcomputer[J]. VACUUM, 2018, 55(5): 15 -18 .
[4] LI Min-jiu, XIONG Tao, JIANG Ya-lan, HE Yan-bin, CHEN Qing-chuan. 20kV high voltage based on double transistor forward converter pulse power supply for metal deburring[J]. VACUUM, 2018, 55(5): 19 -24 .
[5] LIU Yan-wen, MENG Xian-zhan, TIAN Hong, LI Fen, SHI Wen-qi, ZHU Hong, GU Bing. Test of ultra high vacuum in space traveling-wave tube[J]. VACUUM, 2018, 55(5): 25 -28 .
[6] XU Fa-jian, WANG Hai-lei, ZHAO Cai-xia, HUANG Zhi-ting. Application of chemical gases vacuum-compression recovery system in environmental engineering[J]. VACUUM, 2018, 55(5): 29 -33 .
[7] XIE Yuan-hua, HAN Jin, ZHANG Zhi-jun, XU Cheng-hai. Discussion on present situation and development trend of vacuum conveying[J]. VACUUM, 2018, 55(5): 34 -37 .
[8] SUN Li-zhi, YAN Rong-xin, LI Tian-ye, JIA Rui-jin, LI Zheng, SUN Li-chen, WANG Yong, WANG Jian, . Research on distributing law of Xenon in big accumulation chamber[J]. VACUUM, 2018, 55(5): 38 -41 .
[9] HUANG Si, WANG Xue-qian, MO Yu-shi, ZHANG Zhan-fa, YING Bing. Experimental study on similarity law of liquid ring compressor performances[J]. VACUUM, 2018, 55(5): 42 -45 .
[10] CHANG Zhen-dong, MU Ren-de, HE Li-min, HUANG Guang-hong, LI Jian-ping. Reflectance spectroscopy study on TBCs prepared by EB-PVD[J]. VACUUM, 2018, 55(5): 46 -50 .