欢迎访问沈阳真空杂志社 Email Alert    RSS服务

VACUUM ›› 2022, Vol. 59 ›› Issue (3): 52-56.doi: 10.13385/j.cnki.vacuum.2022.03.11

• Thin Film • Previous Articles     Next Articles

Effect of Matrix Surface Microstructure on the Adhesion of PVD Coating

CHANG Zhen-dong1, DENG Zhong-hua2, SUN Rong-zhen2, MU Ren-de1, HU Jiang-wei2   

  1. 1. AECC Beijing Institute of Aeronautical Materials, Beijing 100095, China;
    2. BOE Technology Group Co., Ltd., Beijing 100016, China
  • Received:2020-11-22 Online:2022-05-25 Published:2022-06-01

Abstract: In order to study the effect of matrix surface microstructure on the adhesion between coating and matrix, the adhesion between coating and matrix was tested. The hardness of the coating was measured. The interfacial microstructure between coating and matrix,and the matrix surface microstructure were observed. The relationship between adhesion and surface morphology was analyzed. The results show that after water blasting and dry blasting, V-grooves are formed on the matrix surface, which are expressed as type θ1 and type θ2 respectively(θ1<θ2, θ is the ratio of groove opening width to groove depth). The matrix surface microstructure can significantly affect the adhesion between coating and matrix. But the phase, density and residual stress of coating are not influenced. According to the nucleation mechanism, the atoms will nucleate and grow at the upper edge of θ1 “V” groove. A large number of atoms are blocked, resulting in hollow bottom of “V” groove. In θ2 “V” groove, a large number of atoms enter the groove. With the diffusion of atoms, the almost completely filled“V” groove is formed. As a result,the bonding area of coating and matrix increases, and the adhesion of coating and matrix improves.

Key words: coating, surface microstructure, PVD, adhesion, "V"groove

CLC Number: 

  • TN304
[1] 吕少波. PVD和CVD过程中等离子体物理特性混合模拟及实验研究[D]. 沈阳: 东北大学, 2010.
[2] 杨班权, 陈光南, 张坤, 等. 涂层/基体材料界面结合强度测量方法的现状与展望[J]. 力学进展, 2007, 37(1): 67-79.
[3] 曹美蓉, 魏仕勇, 刘建军. 物理气相沉积TiN涂层结合力的研究现状与展望[J]. 热处理技术与装备, 2009, 30(4): 27-29.
[4] 聂璞林. 界面断裂韧性与膜基结合性能关系的研究[D]. 上海: 上海交通大学, 2009.
[5] 胡希川. X射线衍射分析在硬质合金涂层中的应用[J]. 硬质合金, 2008(4): 236-241.
[6] 李晓茹, 宋国君, 于永明, 等. 磁性金属纳米结构的制备与表征[J]. 材料导报, 2010, 24(6): 95-97.
[7] 李克艳, 薛冬峰. 从原子到晶体的材料硬度研究[J]. 科学通报, 2008, 53(18): 2186-2190.
[8] 徐可为, 白辰东, 何家文. Ti(C,N)涂层的复合硬度与本征硬度的研究[J]. 金属学报, 1995, 31(21): 429-434.
[9] 奥林. 薄膜材料科学: 第2版[M]. 刘卫国, 译. 北京: 国防工业出版社, 2013.
[10] 单英春, 徐久军, 赫晓东, 等. 入射角度对PVD Ni薄膜微观结构的影响[J]. 稀有金属材料与工程, 2007, 36(4): 583-586.
[11] 王梦, 张发生, 刘根华, 等. 磁控溅射参数对(Ba,Sr)TiO3薄膜择优取向生长的影响[J]. 人工晶体学报, 2013, 42(1): 52-57.
[12] 王憨鹰, 王冬玲, 王兆华, 等. NdFeB磁性材料表面化学镀Ni-W-P合金形核过程研究[J]. 兵器材料科学与工程, 2017, 40(4): 16-20.
[13] 王猛, 王修星, 郑浩勇, 等. 基底表面状态对异质形核影响的实验研究[J]. 铸造技术, 2011, 32(5): 626-629.
[14] 盛百城, 刘庆彬, 蔚翠, 等. 碳化硅衬底外延石墨烯[J]. 半导体技术, 2019(8): 635-640.
[15] 赖鸿群. 高结合力陶瓷膜层的制备与连接工艺[D]. 哈尔滨: 哈尔滨工业大学, 2011.
[1] HU Tian-shi, TIAN Xiu-bo, LIU Xiang-li, GONG Chun-zhi. Influence of Incident Energy on the Surface Roughness and Film/Substrate Adhesion Strength of Epitaxially Grown Cr Films:Molecular Dynamics Simulation [J]. VACUUM, 2022, 59(3): 35-40.
[2] ZHU Bei-bei, LIU Qing, QIN Lin, CHU Jian-ning, CHEN Xiao, WANG Xue-fang, XU Jian-feng. Research on Residual Stress Measuring Method and Influencing Factors of Metallized Coating on Hemispherical Harmonic Oscillator [J]. VACUUM, 2022, 59(2): 55-61.
[3] YANG Su-xia, SHEN Wen-zhuo. Design of Control System Based on Intelligent Composite Coating Equipment [J]. VACUUM, 2022, 59(1): 68-73.
[4] YOU Jin-shan. SIS Design and Application for Vacuum Coating Equipment [J]. VACUUM, 2021, 58(5): 80-84.
[5] WU Zhong-ju, BAI Xiao, CHENG Yang-yang, ZHOU She-zhu. Preparation and Characterization of SiC Coating on Isostatic Pressing Formed Graphite Surface [J]. VACUUM, 2021, 58(5): 62-65.
[6] BAI Ming-yuan, WANG Xin, ZHEN Zhen, MU Ren-de, HE Li-min, XU Zhen-hua. Phase Stability and Interfacial Bonding Strength of Rare Earth Zirconate Novel Thermal Barrier Coatings [J]. VACUUM, 2021, 58(4): 12-20.
[7] REN Shao-peng, GAO Peng, WANG Rui-sheng, JIN Xiu, WANG Zhong-lian, ZHANG Yi. Introduction for the Standard of Interference Filters Used for Fluorescence Detection Analysis [J]. VACUUM, 2021, 58(4): 25-29.
[8] ZHOU Mei-li, SHI Chang-yong, CHEN Qing. Study on DLC Coating Uniformity in the Tube Inner Wall Through Microwave Surface Wave Plasma Deposition [J]. VACUUM, 2021, 58(3): 39-44.
[9] GAO Peng, BAN Chao, REN Shao-peng, JIN Xiu, WANG Zhong-lian, YANG Wen-hua. An Optimization for Optical Coating Design Based on Genetic Algorithm [J]. VACUUM, 2021, 58(2): 27-30.
[10] WU Ying-tong, LI Xiao-min, BAI Rui, WANG Dong-wei, WANG Yu, HUANG Mei-dong. Effects of Extra Biased Electric Field on Structure and Properties of TiN Films Deposited by Arc Ion Plating [J]. VACUUM, 2021, 58(1): 63-66.
[11] LIU Lu-sheng, ZHAI Zhao-feng, YANG Bing, SONG Hao-zhe, YU Qi, SHI Dan, YUAN Zi-yao, LU Zhi-gang, CHEN Bin, ZHOU Mei-qi, LI Hai-ning, YU Biao, HUANG Nan, JIANG Xin. Development of Hot Filament Chemical Vapor Deposition Equipment for Continuous Diamond Film Preparation [J]. VACUUM, 2020, 57(6): 1-4.
[12] GUO Zhi-shuai, FEI Shu-guo, YIN Xiao-jun, GAO Peng, ZHAO Shuai-feng, WANG Yin-he, SONG Guang-hui. Design and Coating Technology of Optical Filter for Infrared Thermometry Imaging [J]. VACUUM, 2020, 57(6): 18-22.
[13] WANG Fu-zhen. Heat Treatment and Vacuum Coating Towards Integration [J]. VACUUM, 2020, 57(5): 1-6.
[14] TAN Fei, LIN Song-sheng, SHI Qian, DAI Ming-jiang, DU Wei, WANG Yun-cheng, LV Liang. Fabrication of NiCrAlY Coating by Arc Ion Plating and Its High Temperature Oxidation Resistance [J]. VACUUM, 2020, 57(5): 7-10.
[15] HAO Wei-jin, CHEN Rong-fa, CAO Pei, GONG Zi-yu, LI Jing, GENG Hao-ran, WANG Zi-li. Study on Friction and Wear Properties of CrAlNx Coating on Roller Surface [J]. VACUUM, 2020, 57(5): 28-31.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LI De-tian, CHENG Yong-jun, ZHANG Hu-zhong, SUN Wen-jun, WANG Yong-jun, SUN Jian, LI Gang, . Preparations and applications of carbon nanotube field emitters[J]. VACUUM, 2018, 55(5): 1 -9 .
[2] ZHOU Bin-bin, ZHANG jian, HE Jian-feng, DONG Chang-kun. Carbon nanotube field emission cathode based on direct growth technique[J]. VACUUM, 2018, 55(5): 10 -14 .
[3] LI Zhi-sheng. Development of ultra large shielded door for infrared calibration in simulated space environment[J]. VACUUM, 2018, 55(5): 66 -70 .
[4] ZHENG Lie, LI Hong. Design of 200kV/2mA continuous adjustable DC high voltage generator[J]. VACUUM, 2018, 55(6): 10 -13 .
[5] CHAI Xiao-tong, WANG Liang, WANG Yong-qing, LIU Ming-kun, LIU Xing-zhou, GAN Shu-yi. Operating parameter data acquisition system for single vacuum pump based on STM32F103 microcomputer[J]. VACUUM, 2018, 55(5): 15 -18 .
[6] SUN Li-zhi, YAN Rong-xin, LI Tian-ye, JIA Rui-jin, LI Zheng, SUN Li-chen, WANG Yong, WANG Jian, . Research on distributing law of Xenon in big accumulation chamber[J]. VACUUM, 2018, 55(5): 38 -41 .
[7] HUANG Si, WANG Xue-qian, MO Yu-shi, ZHANG Zhan-fa, YING Bing. Experimental study on similarity law of liquid ring compressor performances[J]. VACUUM, 2018, 55(5): 42 -45 .
[8] JI Ming, SUN Liang, YANG Min-bo. Design of automatic sealing and locking scheme for lunar sample[J]. VACUUM, 2018, 55(6): 24 -27 .
[9] LI Min-jiu, XIONG Tao, JIANG Ya-lan, HE Yan-bin, CHEN Qing-chuan. 20kV high voltage based on double transistor forward converter pulse power supply for metal deburring[J]. VACUUM, 2018, 55(5): 19 -24 .
[10] LIU Yan-wen, MENG Xian-zhan, TIAN Hong, LI Fen, SHI Wen-qi, ZHU Hong, GU Bing. Test of ultra high vacuum in space traveling-wave tube[J]. VACUUM, 2018, 55(5): 25 -28 .