VACUUM ›› 2025, Vol. 62 ›› Issue (2): 100-104.doi: 10.13385/j.cnki.vacuum.2025.02.15
• Vacuum Metallurgy and Thermal Engineering • Previous Articles
WANG Man1, ZHAN Chunming2, SHI Guomei1, WANG Zhe1
CLC Number: TG156.9
[1] 魏亮亮,孙永庆,关玉龙,等.不同冶炼工艺的A286沉淀硬化不锈钢中夹杂物对比探讨[J].冶金分析, 2022,42(10):1-8. [2] 夏晓玲,李玉清,吴大茂. 不同热处理对17-4PH钢过时效组织与性能的影响[J]. 材料科学与工艺,1997, (2):109-113. [3] 杨晓. 17-4PH不锈钢性能和组织研究[D]. 哈尔滨:哈尔滨工程大学,2007. [4] 梁志凯,冯慎田,李冬玲,等. 9Cr13Mo3Co3Nb2V马氏体不锈钢微观组织研究[J]. 航空材料学报,2006,26(3):60-65. [5] 李志,支敏学,刘天琦,等. 新型超高强度-高韧性马氏体沉淀硬化不锈钢的组织和力学性能初探[J]. 航空材料学报,2000,20(3):1-5. [6] 胡春燕,姜涛,刘新灵. 某钢制螺钉断裂失效分析[J]. 金属热处理,2014,39(2):141-144. [7] 董唯莉,付金鹏,张浩,等.不锈钢螺栓断裂原因分析[J].失效分析与预防,2014,9(1):43-47. [8] HSIAO C N, CHIOU C S,YONG J R.Aging reaction in a 17-4PH stainless steel[J]. Materials Chemistry and Physics,2002,23(4):345-349. [9] 周家屹,王沛,张宗峰,等.一种热真空释气试验装置的研制[J].真空, 2023, 60(2):39-44. [10] 赵义,王福. 调整处理对0Cr17Ni4Cu4Nb钢组织及耐蚀性的影响[J]. 东北大学学报(自然科学版),2010,31(7):953-956. [11] 侯凯,杨鑫鑫,赵立,等. 热处理工艺对17-4PH不锈钢冲击韧度的影响[J]. 金属加工(热加工),2012(7):47-49. [12] 杜涛,陈军,袁诚. 时效温度对17-4PH沉淀硬化不锈钢析出行为和硬化效果的影响[J]. 热加工工艺, 2015, 44(4):233-235. [13] WU M,ZHAO Z H,WANG X, et al.Corrosion behavior of 17-4PH stainless steel in simulated marine environment[J].Materials and Corrosion,2019,70(3): 461-469. [14] LASHGARI H R, XUE Y, ONGGOWARSITO C, et al.Microstructure, tribological properties and corrosion behaviour of additively manufactured 17-4PH stainless steel: Effects of scanning pattern, build orientation, and single vs. double scan[J]. Materials Today Communications, 2020,25:101535. [15] 杜大明,汪洋,白小波. 热处理对17-4PH不锈钢组织和性能的影响[J]. 热处理技术与装备,2012,33(1):30-32. [16] 张敏,褚巧玲. 17-4PH不锈钢热处理工艺[J]. 金属热处理,2012,37(9):8-11. [17] 赵莉萍,杨慧,李慧琴. 固溶处理和时效对17-4PH沉淀硬化不锈钢组织性能的影响[J]. 特殊钢,2003,24(4):24-25. [18] FINE M E, ISHEIM D.Origin of copper precipitation strengthening in steel revisited[J]. Scripta Materialia, 2005, 53(1):115-118. [19] KIZLER P, UHLMANN D, SCHMAUDER S.Linking nanoscale and macroscale: calculation of the change in crack growth resistance of steels with different states of Cu precipitation using a modification of stress-strain curves owing to dislocation theory[J].Nuclear Engineering and Design,2000,196(2):175-183. [20] 戚正风. 固态金属中的扩散与相变[M]. 北京:机械工业出版社,1998:332-333. [21] ALNAJJAR M, CHRISTIEN F,BARNIER V, et al.Influence of microstructure and manganese sulfides on corrosion resistance of selective laser melted 17-4PH stainless steel in acidic chloride medium[J]. Corrosion Science,2020,168:108585. [22] ALNAJJAR M, CHRISTIEN F, BOSCH C, et al.A comparative study of microstructure and hydrogen embrittlement of selective laser melted and wrought 17-4PH stainless steel[J]. Materials Science and Engineering A,2020,785:139363. [23] 臧鑫士. 17-4PH不锈钢的化学成分和热加工[J]. 航空制造工程,1995(10):13-15. [24] 赵义,郭亚欢,侯凯. 热处理工艺对17-4PH不锈钢力学性能的影响[J]. 机械工程材料,2009,33(5):5-8. [25] 王均, 沈保罗, 孙志平,等. 17-4PH的时效动力学研究[J]. 四川冶金,2004(1):28-30. [26] 刘国勋. 金属学原理[M]. 北京:冶金工业出版社, 1980: 391-394. [27] 李颇,郭李波,王小奎. 沉淀硬化型不锈钢0Cr17Ni4Cu4Nb试验研究[J]. 黑龙江冶金,2006(3):7-9. [28] 杜涛,甘晓龙,岳江波,等. 时效处理对17-4PH不锈钢硬化效果分析[J]. 中国科技信息,2013(18):140-141. |
[1] | ZHANG Xiangjun, LI Tianrui, WU Wenping, YANG Yong, CHEN Zhiqiang, XU Yong, LU Yong. Effect of Micro-Deoxidizing Elements on the Inclusions in Q355B Steel [J]. VACUUM, 2025, 62(2): 77-85. |
[2] | CHEN Ming, LI Xiangcai, ZHANG Xiaomin, HUANG Shuo, WANG Chong, HU Jun. Effect of P on the as Cast Microstructure and Mechanical Properties of Nickel Based Superalloy [J]. VACUUM, 2025, 62(2): 91-99. |
[3] | JI Jian-chao, YAN Yue, HA En-hua. Effect of Deposition Parameters on Microstructure and Optical Properties of TiO2 Nanofilms [J]. VACUUM, 2024, 61(3): 57-62. |
[4] | LI Can-min, DONG Zhong-lin, XIA Zheng-wei, ZHANG Xin-feng, WEI Rong-hua. Microstructure and Properties of TiCr-based Nanocomposite Coatings by Plasma Enhanced Magnetron Sputtering [J]. VACUUM, 2024, 61(2): 10-15. |
[5] | YU Kang-yuan, HE Yu-dan, YANG Bo, LUO Jiang-shan. Effect of Sputtering Voltage on Microstructure and Properties of Cu Foils Deposited by High Power Impulse Magnetron Sputtering [J]. VACUUM, 2023, 60(3): 1-4. |
[6] | ZHAO Wen-jun, LIU Yu-zhuo, CAI Yan, WANG Li-zhe, LI Jian-ping, MU Ren-de, HE Li-min. Effect of Diffusion Treatment on Structure and Hardness of Low Temperature Pack Cementation Aluminizing Coatings [J]. VACUUM, 2023, 60(2): 30-33. |
[7] | XING Yin-long, WU Jie-feng, PEI Shi-lun, LIU Zhi-hong, LI Bo, LIU Zhen-fei, MA Jian-guo. Vacuum Electron Beam Welding of Semi-Y-state Oxygen Free Copper Plate in Boat Shape RF Cavity [J]. VACUUM, 2022, 59(5): 69-73. |
[8] | LIU Xiao-gong, JIANG Nan, HAO Qi-zan, LUO Liang, SHI Zhen-xue, LUO Yu-shi. Experimental Research on Casting Dimension Effect of Single Crystal Superalloy [J]. VACUUM, 2022, 59(3): 80-85. |
[9] | CHANG Zhen-dong, DENG Zhong-hua, SUN Rong-zhen, MU Ren-de, HU Jiang-wei. Effect of Matrix Surface Microstructure on the Adhesion of PVD Coating [J]. VACUUM, 2022, 59(3): 52-56. |
[10] | FU Xue-cheng, WU Li-ying, LUAN Zhen-xing, MAO Hai-ping, WANG Ying. Modification of Tungsten Crucible for Electron Beam Evaporation of Silver Film [J]. VACUUM, 2022, 59(3): 41-45. |
[11] | WU Yan-chao, LIU Yu-yao, LIU Yang, GAO Sheng-yuan, HUANG Mei-dong. Effects of Modulation Ratio on Mechanical Properties of Cr/TiN Nano-multilayers Prepared by Arc Ion Plating [J]. VACUUM, 2021, 58(2): 10-14. |
[12] | WU Ying-tong, LI Xiao-min, BAI Rui, WANG Dong-wei, WANG Yu, HUANG Mei-dong. Effects of Extra Biased Electric Field on Structure and Properties of TiN Films Deposited by Arc Ion Plating [J]. VACUUM, 2021, 58(1): 63-66. |
[13] | BAO Si-ping, ZHAO Yi-hong, ZHOU Xiao-jin, WANG Zi-li, HE Yu-long, GENG Hao-ran, WANG Kai, SHI Min-jie, CHEN Rong-fa. Effect of Vacuum Heat Treatment on the Microstructure and Wear Resistance of 42CrMo Alloy Rotor [J]. VACUUM, 2020, 57(6): 31-34. |
[14] | ZHAO Xing-wang, LIU Yan-mei, FU He-guo, SHI Ji-peng, GUAN Feng. Research on Microstructure and Mechanical Properties of Laser Butt Welding of Thin TC4 Titanium Alloy [J]. VACUUM, 2020, 57(4): 89-94. |
[15] | LIU Yan-mei, MIAO Yu-hua, PAN Xin, LIU Biao, WANG Cun-shan, LIN Guo-qiang. Analysis on Microstructure and Properties of Graphite/Ni and Graphene Composite Coatings Fabricated by Laser Cladding [J]. VACUUM, 2020, 57(4): 85-88. |
|