欢迎访问沈阳真空杂志社 Email Alert    RSS服务

VACUUM ›› 2025, Vol. 62 ›› Issue (3): 58-64.doi: 10.13385/j.cnki.vacuum.2025.03.11

• Thin Film • Previous Articles     Next Articles

A Novel Plasma Treatment System for Simulating Hydrophilic Modification of Zirconia Implant Surfaces

CAI Jianing1, YU Deping1, GONG Xiaofei2, XUE Jiaqing1, ZHANG Jiacheng1, ZHENG Zheng2, CHEN Wenchuan2,3   

  1. 1. School of Mechanical Engineering, Sichuan University, Chengdu 610065, China;
    2. State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Oral Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China;
    3. Jinjiang Out-patient Section, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
  • Received:2024-12-15 Online:2025-05-25 Published:2025-05-23

Abstract: Zirconia implants are increasingly being used in dental implant surgery owing to their excellent biological and aesthetic properties. To further improve the osseointegration and success rate of zirconia implants, a plasma treatment system for simulating hydrophilic modification of complex shaped zirconia implant surfaces was proposed. The system utilizes nano silver wires to prepare an external transparent electrode as the coaxial dielectric barrier for discharge. The zirconia implant is placed above the axis electrode in the low-voltage chamber, which can significantly improve the surface hydrophilicity of the implant after treatment within one minute. The reliability and effectiveness of the system were verified through experiments, and the optimal processing parameters were determined. When the implantation treatment time is about 60 s, the absolute air pressure is below 3 kPa, and the power output voltage is 7 kV, the zirconia implant shows the best hydrophilicity.

Key words: plasma, hydrophilic modification, implant, zirconia

CLC Number:  TH787

[1] CHEVALIER J.What future for zirconia as a biomaterial?[J]. Biomaterials, 2006, 27(4): 535-543.
[2] HAFEZEQORAN A, KOODARYAN R.Effect of zirconia dental implant surfaces on bone integration: a systematic review and meta-analysis[J]. BioMed Research International, 2017, 2017(1): 9246721.
[3] ALALAWI H, AL MUTAIRI Z, AL ABBASI O, et al.Efficacy of atmospheric pressure plasma jet-induced surface treatment on wettability, surface topography, and shear bond strength of ceramic surfaces for CAD-on assembly[J]. Prosthesis, 2024, 6(5): 1228-1239.
[4] 詹凌璐,张玉玮,郑苗,等. 大气压冷等离子体处理提高氧化锆粘接性能[J]. 口腔颌面修复学杂志,2019,20(1):3-8.
[5] LEE C T, HUANG Y W, ZHU L, et al.Prevalences of peri-implantitis and peri-implant mucositis: systematic review and meta-analysis[J]. Journal of Dentistry, 2017, 62: 1-12.
[6] SHEN X T, LI J Y, LUO X, et al.Peri-implant marginal bone changes with implant-supported metal-ceramic or monolithic zirconia single crowns: a retrospective clinical study of 1 to 5 years[J]. The Journal of Prosthetic Dentistry, 2022, 128(3): 368-374.
[7] DELGADO-RUIZ R, ROMANOS G.Potential causes of titanium particle and ion release in implant dentistry: a systematic review[J]. International Journal of Molecular Sciences, 2018, 19(11): 3585.
[8] EGUSA H, KO N, SHIMAZU T, et al.Suspected association of an allergic reaction with titanium dental implants: a clinical report[J]. The Journal of Prosthetic Dentistry, 2008, 100(5): 344-347.
[9] JUNG R E, SAILER I, HAMMERLE C H F, et al. In vitro color changes of soft tissues caused by restorative materials[J]. International Journal of Periodontics and Restorative Dentistry, 2007, 27(3): 251.
[10] PADHYE N M, CALCIOLARI E, ZUERCHER A N, et al.Survival and success of zirconia compared with titanium implants: a systematic review and meta-analysis[J]. Clinical Oral Investigations, 2023, 27(11): 6279-6290.
[11] NISHIHARA H, ADANEZ M H, ATT W.Current status of zirconia implants in dentistry: preclinical tests[J]. Journal of Prosthodontic Research, 2019, 63(1): 1-14.
[12] ANDREIOTELLI M, WENZ H J, KOHAL R J.Are ceramic implants a viable alternative to titanium implants? A systematic literature review[J]. Clinical Oral Implants Research, 2009, 20: 32-47.
[13] SAITO M M, ONUMA K, YAMAMOTO R, et al.New insights into bioactivity of ceria-stabilized zirconia: direct bonding to bone-like hydroxyapatite at nanoscale[J]. Materials Science and Engineering: C, 2021, 121: 111665.
[14] 张文民. 氧化锆牙种植体活性物质渗透和多孔表层复合改性的构建及性能研究[D].广州:华南理工大学,2023.
[15] BUJ-CORRAL I, TEJO-OTERO A.3D printing of bioinert oxide ceramics for medical applications[J]. Journal of Functional Biomaterials, 2022, 13(3): 155.
[16] DONG Y, LONG L, ZHANG P, et al.A chair-side plasma treatment system for rapidly enhancing the surface hydrophilicity of titanium dental implants in clinical operations[J]. Journal of Oral Science, 2021, 63(4): 334-340.
[17] JEON H J, JUNG A, KIM H J, et al.Enhanced osteoblast adhesion and proliferation on vacuum plasma-treated implant surface[J]. Applied Sciences, 2022, 12(19): 9884.
[18] NEVINS M, CHEN C Y, PARMA-BENFENATI S, et al.Gas plasma treatment improves titanium dental implant osseointegration: a preclinical in vivo experimental study[J]. Bioengineering, 2023, 10(10): 1181.
[19] KANG S U, KIM C H, YOU S, et al.Plasma surface modification of 3Y-TZP at low and atmospheric pressures with different treatment times[J]. International Journal of Molecular Sciences, 2023, 24(8): 7663.
[20] ZHENG Z, AO X G, XIE P, et al.Effects of novel non-thermal atmospheric plasma treatment of titanium on physical and biological improvements and in vivo osseointegration in rats[J]. Scientific Reports,2020,10:10637.
[21] 赵曜. 大气压空气DBD时空演化特性及在水果保鲜中的应用研究[D]. 大连: 大连理工大学,2022.
[22] 罗毅,方志,邱毓昌. 材料性质对介质阻挡放电特性的影响[J]. 绝缘材料,2003,36(4):45-47.
[23] BRUM S D I, ELIAS N C, LOPES A C J, et al. Clinical analysis of the Influence of surface roughness in the primary stability and osseointegration of dental implants: study in humans[J]. Coatings, 2024, 14(8):951-951.
[24] CRISTIAN C, ALESSIO M, ANDREA A, et al.A feasibility study of promoting osseointegration surface roughness by micro-milling of Ti-6Al-4V biomedical alloy[J].The International Journal of Advanced Manufacturing Technology, 2023,126(7/8):3053-3067.
[1] ZENG Fangqi, LI Yunpo, WEI Yupin, PU Shihao, JIN Fanya. Design of High-Frequency Pulsed Transformers for Ion Source Power Supply [J]. VACUUM, 2025, 62(3): 70-75.
[2] TIAN Wenjuan, HE Xiaobin, JIAO Binbin. Research on the Technology of RF Plasma Degluing and Surface Cleaning [J]. VACUUM, 2025, 62(2): 56-61.
[3] WU Hong-chen, YANG Li-yuan. Research on Pulsed Cathodic Arc Plasma and the Related Characteristics [J]. VACUUM, 2024, 61(1): 1-9.
[4] HUANG Guang-hong, LI Di, LI Na, ZHEN Zhen, WANG Xin, XU Zhen-hua. Effect of H2 on the Graphene Growth at Different Stages in the Plasma Enhanced Chemical Vapor Deposition Process [J]. VACUUM, 2024, 61(1): 34-40.
[5] LI Jian-jun, SUN Zu-lai, SONG Qing-zhu, ZHANG Zhe-kui, MU Xin, GE Jia-xi, YIN Dan-feng, В.А.ШАПОВАЛОВ, XU Xiao-hai. Application of Plasma Technology in Metal Smelting Reduction and Purification [J]. VACUUM, 2023, 60(6): 47-52.
[6] ZHOU Tong, LI Peng, CAO Hong-li, ZHANG Hai-long. Plasma Cleaning Technology of Closed Channel Inside a Quartz Device [J]. VACUUM, 2023, 60(5): 51-54.
[7] HUANG Chuan-xin, XIN Ji-ying, TIAN Zhong-jun, WANG Meng, LÜ Kai-kai, LIANG Lan-ju, LIU Yun-yun. Improvement of the Electrical Performance and Stability of InZnO Material and TFT by Oxygen Plasma Processing [J]. VACUUM, 2023, 60(4): 24-28.
[8] GUO Fang-zhun, SHI Xiao-qian, WANG Run-cheng. Development of Compact Emission Guns for Charged Particles [J]. VACUUM, 2023, 60(4): 29-35.
[9] MENG Chao, YUE Shou-jing, XUAN Li-xin, XUE Hong-ming, GAO Zhen, WANG Xin-chao. Influence of Surface Plasma Activation on Cyanate Ester Composites [J]. VACUUM, 2022, 59(2): 6-10.
[10] WEI Yong-qiang. Characteristics of Spatial Transmission Velocity and Energy of Ti Macroparticles in Arc Ion Plating Processing [J]. VACUUM, 2021, 58(6): 48-54.
[11] YANG Tong, YIN Zheng-xin, QIU Ji-er, YANG Sheng-yuan, ZHANG Qing-bo, YU De-ping. Research on the Static and Dynamic Behavior on the Plasma Torch Used for Plasma Atomization [J]. VACUUM, 2021, 58(5): 66-71.
[12] FENG Jie, CHENG Rong, ZHAO Yong, WANG Yan-long, WANG Shang-min, ZHANG Hong, JIA Yan-hui. FFT Analysis of Discharge Oscillations of Plasma Contactor [J]. VACUUM, 2021, 58(5): 72-76.
[13] WANG Yang, ZHANG Gao-hui, WANG Kai, YANG Rong-fei, LI Xiang, SUN Qi-xuan. Laser Ablative Characterization of Fire Resistance for the Titanium Alloy Ti6Al4V Surface by Ion Implanted Copper [J]. VACUUM, 2021, 58(5): 98-103.
[14] TU Jun, SONG Wen-jie, ZHANG Bin, YU De-ping, LI Yi-hong. Experimental Study on the Working Characteristics of Steam Plasma Torch [J]. VACUUM, 2021, 58(4): 87-92.
[15] ZHOU Mei-li, SHI Chang-yong, CHEN Qing. Study on DLC Coating Uniformity in the Tube Inner Wall Through Microwave Surface Wave Plasma Deposition [J]. VACUUM, 2021, 58(3): 39-44.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LI De-tian, CHENG Yong-jun, ZHANG Hu-zhong, SUN Wen-jun, WANG Yong-jun, SUN Jian, LI Gang, . Preparations and applications of carbon nanotube field emitters[J]. VACUUM, 2018, 55(5): 1 -9 .
[2] ZHOU Bin-bin, ZHANG jian, HE Jian-feng, DONG Chang-kun. Carbon nanotube field emission cathode based on direct growth technique[J]. VACUUM, 2018, 55(5): 10 -14 .
[3] CHAI Xiao-tong, WANG Liang, WANG Yong-qing, LIU Ming-kun, LIU Xing-zhou, GAN Shu-yi. Operating parameter data acquisition system for single vacuum pump based on STM32F103 microcomputer[J]. VACUUM, 2018, 55(5): 15 -18 .
[4] LI Min-jiu, XIONG Tao, JIANG Ya-lan, HE Yan-bin, CHEN Qing-chuan. 20kV high voltage based on double transistor forward converter pulse power supply for metal deburring[J]. VACUUM, 2018, 55(5): 19 -24 .
[5] LIU Yan-wen, MENG Xian-zhan, TIAN Hong, LI Fen, SHI Wen-qi, ZHU Hong, GU Bing. Test of ultra high vacuum in space traveling-wave tube[J]. VACUUM, 2018, 55(5): 25 -28 .
[6] XU Fa-jian, WANG Hai-lei, ZHAO Cai-xia, HUANG Zhi-ting. Application of chemical gases vacuum-compression recovery system in environmental engineering[J]. VACUUM, 2018, 55(5): 29 -33 .
[7] XIE Yuan-hua, HAN Jin, ZHANG Zhi-jun, XU Cheng-hai. Discussion on present situation and development trend of vacuum conveying[J]. VACUUM, 2018, 55(5): 34 -37 .
[8] SUN Li-zhi, YAN Rong-xin, LI Tian-ye, JIA Rui-jin, LI Zheng, SUN Li-chen, WANG Yong, WANG Jian, . Research on distributing law of Xenon in big accumulation chamber[J]. VACUUM, 2018, 55(5): 38 -41 .
[9] HUANG Si, WANG Xue-qian, MO Yu-shi, ZHANG Zhan-fa, YING Bing. Experimental study on similarity law of liquid ring compressor performances[J]. VACUUM, 2018, 55(5): 42 -45 .
[10] CHANG Zhen-dong, MU Ren-de, HE Li-min, HUANG Guang-hong, LI Jian-ping. Reflectance spectroscopy study on TBCs prepared by EB-PVD[J]. VACUUM, 2018, 55(5): 46 -50 .