欢迎访问沈阳真空杂志社 Email Alert    RSS服务

VACUUM ›› 2021, Vol. 58 ›› Issue (6): 48-54.doi: 10.13385/j.cnki.vacuum.2021.06.09

• Thin Film • Previous Articles     Next Articles

Characteristics of Spatial Transmission Velocity and Energy of Ti Macroparticles in Arc Ion Plating Processing

WEI Yong-qiang   

  1. School of Aeronautics and Astronautics, Zhengzhou University of Aeronautics, Zhengzhou 450046, China
  • Received:2021-04-06 Online:2021-11-25 Published:2021-11-30

Abstract: During arc ion plating process, the macroparticle defects are focused in recent years. The relationship between Ti macroparticle size, velocity and energy change in the spatial transmission was calculated, which was used to account for the main change reasons of the macroparticle morphology in the coatings surface. During the transmission process, the density of ions and electrons changed at different working distances. The Ti macroparticles were affected by the collisions of ions and electrons, which caused the velocity and energy changes of Ti macroparticles. The Ti macroparticles remained semi-solid and liquid when reaching the substrate surface. The morphologies of Ti macroparticles showed flat oval and strip after the collision with the substrate surface.

Key words: arc ion plating, macroparticles(MPs), plasma, velocity

CLC Number: 

  • TB383.2
[1] DAALDER J E.Components of cathode erosion in vacuum arcs[J]. Journal of Physics D: Applied Physics, 1976, 9(16): 2379-2395.
[2] DAALDER J E.A cathode spot model and its energy balance for metal vapour arcs[J]. Journal of Physics D: Applied Physics, 1978, 11(12): 1667-1682.
[3] UTSUMI T, ENGLISH J H.Study of electrode products emitted by vacuum arcs in form of molten metal particles[J]. Journal of Applied Physics, 1975, 46(1): 126-131.
[4] MONTEIRO O R, ANDERS A.Vacuum-arc-generated macroparticles in the nanometer range[J]. IEEE Transactions on Plasma Science, 1999, 27(4): 1030-1033.
[5] ZHIRKOV I, POLCIK P, KOLOZSVÁRI S, et al. Macroparticle generation in DC arc discharge from a WC cathode[J]. Journal of Applied Physics, 2017, 121(10): 103305.
[6] SHIAO M H, CHANG Z C, SHIEU F S.Characterization and formation mechanism of macroparticles in arc ion-plated CrN thin films[J]. Journal of The Electrochemical Society, 2003, 150(5): 320-324.
[7] 魏永强, 魏永辉, 蒋志强, 等. 基体放置状态与脉冲偏压幅值对大颗粒形貌和分布的影响规律[J]. 真空科学与技术学报, 2014, 34(10): 1021-1028.
[8] 魏永强, 魏永辉, 蒋志强, 等. 放置方向和沉积时间对 Ti 大颗粒分布状态的影响[J]. 表面技术, 2014, 43(5): 6-10+41.
[9] 魏永强, 刘建伟, 文振华, 等. 脉冲偏压占空比和放置状态对大颗粒分布规律的影响[J]. 热加工工艺, 2015, 44(4): 134-137.
[10] 魏永强, 贾爱芹, 蒋志强, 等. 靶基间距对电弧离子镀中大颗粒形貌和分布的影响[J]. 金属热处理, 2014, 39(7): 130-134.
[11] BOXMAN R L, GOLDSMITH S.Macroparticle contamination in cathodic arc coatings: generation, transport and control[J]. Surface & Coatings Technology, 1992, 52(1): 39-50.
[12] SHALEV S, BOXMAN R L, GOLDSMITH S.Velocities and emission rates of cathode-produced molybdenum macroparticles in a vacuum arc[J]. Journal of Applied Physics, 1985, 58(7): 2503-2507.
[13] NITTER T.Levitation of dust in rf and dc glow discharges[J]. Plasma Sources Science and Technology, 1996, 5(1): 93-111.
[14] KIMBLIN C W.Erosion and ionization in the cathode spot regions of vacuum arcs[J]. Journal of Applied Physics, 1973, 44(7): 3074-3081.
[15] VYSKOČIL J, MUSIL J. Cathodic arc evaporation in thin film technology[J]. Journal of Vacuum Science & Technology A, 1992, 10(4): 1740-1748.
[16] BOXMAN R L.Interferometric measurement of electron and vapor densities in a high-current vacuum arc[J]. Journal of Applied Physics, 1974, 45(11): 4835-4846.
[17] 黄美东. 脉冲偏压电弧离子镀低温沉积研究 [D]. 大连: 大连理工大学, 2002.
[18] BEN-SHALOM A, BOXMAN R L, GOLDSMITH S.Ion current collected at various distances and argon background pressures in a copper vacuum arc[J]. IEEE Transactions on Plasma Science, 1993, 21(5): 435-439.
[19] DAVIS W D, MILLER H C.Analysis of the electrode products emitted by dc arcs in a vacuum ambient[J]. Journal of Applied Physics, 1969, 40(5): 2212-2221.
[20] ANDERS A.Growth and decay of macroparticles:a feasible approach to clean vacuum arc plasmas?[J]. Journal of Applied Physics, 1997, 82(8): 3679-3688.
[21] BOXMAN R L, GOLDSMITH S.The interaction between plasma and macroparticles in a multi-cathode-spot vacuum arc[J]. Journal of Applied Physics, 1981, 52(1): 151-161.
[22] TAY B K, ZHAO Z W, CHUA D H C. Review of metal oxide films deposited by filtered cathodic vacuum arc technique[J]. Materials Science and Engineering R, 2006, 52(1-3): 1-48.
[23] KUTZNER J, MILLER H C.Integrated ion flux emitted from the cathode spot region of a diffuse vacuum arc[J]. Journal of Physics D: Applied Physics, 1992, 25(4): 686-693.
[24] 张克华, 董是元. 钛及钛合金的焊接[M]. 北京: 机械工业出版社, 1985: 1-2.
[25] RYSANEK F.Charging of macroparticles ejected from a pulsed vacuum arc[D]. United States Illinois: University of Illinois at Urbana-Champaign, 2007.
[1] YANG Tong, YIN Zheng-xin, QIU Ji-er, YANG Sheng-yuan, ZHANG Qing-bo, YU De-ping. Research on the Static and Dynamic Behavior on the Plasma Torch Used for Plasma Atomization [J]. VACUUM, 2021, 58(5): 66-71.
[2] FENG Jie, CHENG Rong, ZHAO Yong, WANG Yan-long, WANG Shang-min, ZHANG Hong, JIA Yan-hui. FFT Analysis of Discharge Oscillations of Plasma Contactor [J]. VACUUM, 2021, 58(5): 72-76.
[3] TU Jun, SONG Wen-jie, ZHANG Bin, YU De-ping, LI Yi-hong. Experimental Study on the Working Characteristics of Steam Plasma Torch [J]. VACUUM, 2021, 58(4): 87-92.
[4] ZHOU Mei-li, SHI Chang-yong, CHEN Qing. Study on DLC Coating Uniformity in the Tube Inner Wall Through Microwave Surface Wave Plasma Deposition [J]. VACUUM, 2021, 58(3): 39-44.
[5] WU Yan-chao, LIU Yu-yao, LIU Yang, GAO Sheng-yuan, HUANG Mei-dong. Effects of Modulation Ratio on Mechanical Properties of Cr/TiN Nano-multilayers Prepared by Arc Ion Plating [J]. VACUUM, 2021, 58(2): 10-14.
[6] CHAI Hao, JIA Jun-wei, WANG Bin, LI Peng, CUI Shuang, FENG Xu, LI Wei, LIU Zhan, LI Shao-fei, CHEN Quan. Design and Characteristic Study on Compact Microwave ECR Plasma Source [J]. VACUUM, 2021, 58(1): 6-9.
[7] WU Ying-tong, LI Xiao-min, BAI Rui, WANG Dong-wei, WANG Yu, HUANG Mei-dong. Effects of Extra Biased Electric Field on Structure and Properties of TiN Films Deposited by Arc Ion Plating [J]. VACUUM, 2021, 58(1): 63-66.
[8] YIN Ji-ping, QIAO Hong, LIN Zeng, BA De-chun. Data Processing System of Single Langmuir Probe Based on LabVIEW [J]. VACUUM, 2020, 57(6): 48-53.
[9] WANG Fu-zhen. Heat Treatment and Vacuum Coating Towards Integration [J]. VACUUM, 2020, 57(5): 1-6.
[10] TAN Fei, LIN Song-sheng, SHI Qian, DAI Ming-jiang, DU Wei, WANG Yun-cheng, LV Liang. Fabrication of NiCrAlY Coating by Arc Ion Plating and Its High Temperature Oxidation Resistance [J]. VACUUM, 2020, 57(5): 7-10.
[11] ZHANG Tian-yi, Yang Zhi-hao, LIU Yun-hui, MA Yu-tian, WANG Bo. Effect of Structure and Material of Narrow-Electrode with Quartz Plate Interlayer on DC Plasma Discharge [J]. VACUUM, 2020, 57(5): 61-65.
[12] XU Fa-jian, HUANG Zhi-ting, LIU Bao-xin. Design Method and Engineering Application of Liquid Ring Compression System Based on Thermodynamics Theory [J]. VACUUM, 2020, 57(5): 79-84.
[13] ZHAO Jie, XV Li, LI Jian, WANG Kun, WANG Shi-qing. Numerical Simulation and Analysis of Discharge Plasma in Hall Thruster [J]. VACUUM, 2020, 57(4): 54-59.
[14] WANG Xiao-ming, E Dong-mei, WU Jun-sheng, ZHANG Xu-yue, ZHOU Yan-wen. Simulation of MagnetronSputtering Enhancement Based on Plasma [J]. VACUUM, 2020, 57(3): 5-6.
[15] ZHONG Li, SHEN Li-ru, CHEN Mei-yan, LIU Tong, DAN Min, JIN Fan-ya. Study on Tribological Properties of (Ti, Cr) N Films [J]. VACUUM, 2020, 57(2): 27-32.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!