欢迎访问沈阳真空杂志社 Email Alert    RSS服务

VACUUM ›› 2025, Vol. 62 ›› Issue (4): 44-48.doi: 10.13385/j.cnki.vacuum.2025.04.08

• Vacuum Metallurgy and Thermal Engineering • Previous Articles     Next Articles

Research on Control Process of Ytterbium Atomic Vapor Density Prepared by Lanthanum Thermal Reduction

HU Linsong1, JIN Ce1,2   

  1. 1. Institute of Physical and Chemical Engineering in Nuclear Industry, Tianjin 300180, China;
    2. National Key Laboratory of Particle Transport and Separation Technology, Tianjin 300180, China
  • Received:2025-02-10 Online:2025-07-25 Published:2025-07-24

Abstract: At present, the temperature for preparing ytterbium by lanthanum thermal reduction method in industry is usually set at 1 200 ℃, the yield and purity of ytterbium are high, but the reaction is intense. In view of the fact that some specific engineering fields have strict requirements for atomic vapour density of the reaction product, this article analyses the process and thermodynamics of lanthanum thermal reduction to prepare ytterbium with high purity ytterbium oxide and lanthanum chips as raw materials. The influence of reduction temperature and reducing agent ratio on atomic vapour density were studied. The results show that there is a slight reaction at 650 ℃. At 700-800 ℃, the atomic vapour density increases dramatically with the temperature. The atomic vapour density is above 1012 cm-3 over 800 ℃. At 850-1 000 ℃, the purity of the reaction product is not less than 99.79%, when the excess ratio of reducing agent is lower than 100 %, the ytterbium atom vapour density still increases significantly with the increase of reaction temperature.

Key words: lanthanum thermal reduction, ytterbium, vacuum distillation, rare earth, vapour density

CLC Number:  O616

[1] 易宪武, 黄春辉, 王慰, 等. 无机化学丛书第七卷: 钪稀土元素[M]. 北京:科学出版社,2018.
[2] PECHARSKY V K, GSCHNEIDNER K A JR, FORT D. Superheating and other unusual observations regarding the first order phase transition in Dy[J]. Scripta Materrialia, 1996,35(7):843-848.
[3] TOMASZEWSKA-ROLLA D, LINDBERG R, PASISKEVICIUS V, et al.A comparative study of an Yb-doped fiber gain-managed nonlinear amplifier seeded by femtosecond fiber lasers[J]. Scientific Reports, 2022, 12(1): 404.
[4] 赵艳新. 高功率掺镱光纤激光器的非线性效应与研究进展[J]. 光学技术,2024,50(1):40-47.
[5] OULMAATI L, BELMOKHTAR S, BOUZIANE K, et al.Comparison of energy transfer between terbium and ytterbium ions in glass and glass ceramic: application in photovoltaic[J]. Solar Energy Advances, 2022, 2: 100012.
[6] 耿文范. 神奇的现代新材料[M].北京:兵器工业出版社,1991:158.
[7] LI B, WANG H W,JIE J C, et al.Microstructure evolution and modification mechanism of ytterbium modified Al-7.5%Si-0.45%Mg alloys[J]. Journal of Alloys and Compounds, 2020, 509(7): 3387-3392.
[8] TÁRKÁNYI F, DITROI F, TAKÁCS S, et al. Activation cross-sections of longer lived products of deuteron induced nuclear reactions on ytterbium up to 40 MeV[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2013, 304: 36-48.
[9] 齐启超,金涛韫,彭成权,等.冷镱原子光钟绝对频率测量及相关跃迁研究的进展[J]. 仪器仪表学报, 2024, 45(2):2-16.
[10] ALIEV R A, PRISELKOVA A B, KHANKIN V V, et al.Production of medical radioisotope 167Tm by photonuclear reactions on natural ytterbium[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2021, 508: 19-23.
[11] SANKARI M, SURYANARAYANA M V.Theoretical investigations on the laser isotope separation of 175Yb for medical applications[J]. Applied Radiation and Isotopes, 2024, 209: 111328.
[12] HANNACHI E, KHAN F A, SLIMANI Y, et al.In vitro antimicrobial and anticancer peculiarities of ytterbium and cerium Co-doped zinc oxide nanoparticles[J]. Biology, 2022, 11(12): 1836.
[13] TITOVA S A, KRUGLOVA M P, STUPIN V A, et al.Potential applications of rare earth metal nanoparticles in biomedicine[J]. Pharmaceuticals, 2025, 18(2): 154.
[14] XU K, REN X, WU D, et al.Study on key process parameter for separation and preparation of high abundance ytterbium 176 isotopes by electromagnetic method[J]. Atomic Energy Science and Technology, 2023, 57(3): 666-672.
[15] 宁志军. 基于氧化镱缓冲层实现高效反式结构钙钛矿太阳能电池[J]. 科学通报,2024,69(13):1669-1670.
[16] 周菲,兰昊,孙小明,等. 氧化镱掺杂氧化铪陶瓷的高温相稳定性与热膨胀性能[J]. 过程工程学报,2024,24(5):580-588.
[17] 邓汝富, 方诚厚, 吴炳乾,等. 用氧化镱富集物制取金属镱的工艺研究[J]. 稀有金属,1996,20(4):269-272.
[18] IONOV A M, NIKIFOROVA T V, RYTUS N N.Aspects of the purification of volatile rare earth metals by UHV sublimation: Sm, Eu, Tm, Yb[J]. Vacuum, 1996, 47(6-8): 879-883.
[19] 黄美松, 成维, 杨露辉, 等. 高纯金属镱的制备工艺研究[J]. 矿冶工程, 2013, 33(6): 94-96.
[20] 张先恒,赵二雄,苗旭晨,等. 一次还原蒸馏制备高纯金属镱的工艺[J]. 金属功能材料,2020,27(6):28-33.
[21] 丁晓玲, 吴炳乾. 铈热还原铥镱镥富集物制取金属镱的热力学探讨[J]. 南方冶金学院学报,1996 (3):204-209.
[22] 邓汝富,方诚厚,吴炳乾,等. 用氧化镱富集物制取金属镱的工艺研究[J]. 稀有金属,1996, 20(4):269-272.
[23] 夏雯,刘淑凤,张丽民. 真空蒸馏技术在低熔点金属提纯中的应用[J]. 有色金属科学与工程,2013,4(4):36-40.
[24] 丘克强, 段文军, 陈启元. 金属在真空状态下的蒸发速率[J]. 有色金属,2002,54(2):48-52.
[25] 叶大伦, 胡建华. 实用无机物热力学数据手册[M].北京:冶金工业出版社,2002.
[26] 吴炳乾, 张耀文. 镧热还原铥镜镥富集物时杂质行为的讨论[J]. 江西有色金属,1997,11(2):34-37.
[27] 韩小亮, 张永健, 廖景文,等. 镧热还原法制备金属镱研究[J]. 福建冶金,2002, 51(1):26-29.
[1] CHEN Ding, MA Hailing, LI Jing, XING Wang, MO Fan. Application of Vacuum Distillation Furnace in the Cathode Materials of Lithium-Ion Batteries for New Energy Vehicles [J]. VACUUM, 2025, 62(4): 64-68.
[2] ZHANG Bao-fu, YU Yang, GAO Xun-yi, LI Jin-jian, WANG Jian-guo, WANG Ling-ling. Application of High Differential Pressure Roots Pump Combination Pumping System for Large Vacuum Distillation Deep Cut Unit [J]. VACUUM, 2022, 59(5): 45-49.
[3] LIAO Guo-jin, YAN Shao-feng, YI Deng-li, DAI Xiao-chun. The Luminescent Property of Al2O3:Ce MFRMS Thin Films Sputtered by Optimal Design of Experiments [J]. VACUUM, 2022, 59(1): 24-28.
[4] BAI Ming-yuan, WANG Xin, ZHEN Zhen, MU Ren-de, HE Li-min, XU Zhen-hua. Phase Stability and Interfacial Bonding Strength of Rare Earth Zirconate Novel Thermal Barrier Coatings [J]. VACUUM, 2021, 58(4): 12-20.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LI De-tian, CHENG Yong-jun, ZHANG Hu-zhong, SUN Wen-jun, WANG Yong-jun, SUN Jian, LI Gang, . Preparations and applications of carbon nanotube field emitters[J]. VACUUM, 2018, 55(5): 1 -9 .
[2] ZHOU Bin-bin, ZHANG jian, HE Jian-feng, DONG Chang-kun. Carbon nanotube field emission cathode based on direct growth technique[J]. VACUUM, 2018, 55(5): 10 -14 .
[3] CHAI Xiao-tong, WANG Liang, WANG Yong-qing, LIU Ming-kun, LIU Xing-zhou, GAN Shu-yi. Operating parameter data acquisition system for single vacuum pump based on STM32F103 microcomputer[J]. VACUUM, 2018, 55(5): 15 -18 .
[4] LI Min-jiu, XIONG Tao, JIANG Ya-lan, HE Yan-bin, CHEN Qing-chuan. 20kV high voltage based on double transistor forward converter pulse power supply for metal deburring[J]. VACUUM, 2018, 55(5): 19 -24 .
[5] LIU Yan-wen, MENG Xian-zhan, TIAN Hong, LI Fen, SHI Wen-qi, ZHU Hong, GU Bing. Test of ultra high vacuum in space traveling-wave tube[J]. VACUUM, 2018, 55(5): 25 -28 .
[6] XU Fa-jian, WANG Hai-lei, ZHAO Cai-xia, HUANG Zhi-ting. Application of chemical gases vacuum-compression recovery system in environmental engineering[J]. VACUUM, 2018, 55(5): 29 -33 .
[7] XIE Yuan-hua, HAN Jin, ZHANG Zhi-jun, XU Cheng-hai. Discussion on present situation and development trend of vacuum conveying[J]. VACUUM, 2018, 55(5): 34 -37 .
[8] SUN Li-zhi, YAN Rong-xin, LI Tian-ye, JIA Rui-jin, LI Zheng, SUN Li-chen, WANG Yong, WANG Jian, . Research on distributing law of Xenon in big accumulation chamber[J]. VACUUM, 2018, 55(5): 38 -41 .
[9] HUANG Si, WANG Xue-qian, MO Yu-shi, ZHANG Zhan-fa, YING Bing. Experimental study on similarity law of liquid ring compressor performances[J]. VACUUM, 2018, 55(5): 42 -45 .
[10] CHANG Zhen-dong, MU Ren-de, HE Li-min, HUANG Guang-hong, LI Jian-ping. Reflectance spectroscopy study on TBCs prepared by EB-PVD[J]. VACUUM, 2018, 55(5): 46 -50 .