欢迎访问沈阳真空杂志社 Email Alert    RSS服务

VACUUM ›› 2025, Vol. 62 ›› Issue (4): 64-68.doi: 10.13385/j.cnki.vacuum.2025.04.12

• Vacuum Metallurgy and Thermal Engineering • Previous Articles     Next Articles

Application of Vacuum Distillation Furnace in the Cathode Materials of Lithium-Ion Batteries for New Energy Vehicles

CHEN Ding, MA Hailing, LI Jing, XING Wang, MO Fan   

  1. Shenyang Vacuum Technology Research Institute Co., Ltd., Shenyang 110042, China
  • Received:2024-12-10 Online:2025-07-25 Published:2025-07-24

Abstract: With the booming development of the new energy vehicle market, lithium-ion battery serves as the core power source, its performance improvement has become the key point. The application of vacuum distillation furnaces in the new cathode materials for lithium-ion batteries demonstrates significant advantages. By analyzing the challenges faced by lithium-ion battery cathode materials, the technical principles and benefits of vacuum distillation furnaces are expounded, covering key technologies such as high-temperature evaporation systems, temperature control in the transition zone, rotary cooling constant-temperature collection system, and vacuum maintenance system. The results show that vacuum distillation furnaces can efficiently produce high-quality silicon monoxide (SiO) cathode materials, significantly enhance the material performance consistency and boost the energy density of lithium-ion batteries. Moreover, the furnace has the potential for large-scale production, which can reduce production costs and meet the market demand for high-performance lithium-ion batteries in new energy vehicles.

Key words: vacuum distillation furnace, new energy vehicle, lithium-ion battery, cathode material, silicon monoxide

CLC Number:  TB79;TM910.4

[1] 张伟杰,王瑞强.真空蒸馏炉于精铋生产过程中的应用[J].世界有色金属,2021(18):15-17.
[2] 刘振. 新能源汽车锂离子电池材料专利分析[J]. 汽车与新动力,2024,7(增刊1):94-98.
[3] 高芮芮,张素娜,吴益华,等.热处理对退役锂离子电池石墨负极材料电化学性能的影响[J].上海第二工业大学学报,2025,42(1):17-23.
[4] 冯明燕,王芳,赵肃莹.锂离子电池中负极材料比容量的测试方法及其应用[J/OL].电池工业.(2024-12-27)[2025-03-28]. http://kns.cnki.net/kcms/detail/32.1448.TM.20241226.1420.004.html.
[5] 谭晓军,程海峰,陈维杰.一种面向轻型电动车的锂离子电池组均衡方法[J].电源技术, 2016, 40(7):1403-1406.
[6] 凌人,竺方辉,侯红磊,等.一种蓄电池管理系统及其控制方法: CN202411707534.8[P].2024-11-27.
[7] 穆洪亮,冯柳,吴立清,等.SiO用作锂离子电池负极材料的研究进展[J].材料导报, 2023, 37(18):5-17
[8] 郑杰. 新能源车用锂离子动力电池虚接及微短路故障诊断方法研究[D]. 郑州: 郑州轻工业大学,2024.
[9] 张敏. 车用锂离子电池火灾及细水雾灭火关键参数模拟研究[D].上海: 华东理工大学,2023.
[10] 丁欣超. 车载锂离子动力电池组连接故障诊断方法研究[D].济南: 山东大学,2023.
[11] 刘澳丽. 外资新能源汽车企业中国市场进入模式研究[D].秦皇岛: 河北大学,2023.
[12] 邱艳. 基于数据驱动的车用锂离子电池故障诊断方法与应用研究[D]. 烟台: 山东工商学院,2022.
[13] 谭小芬. LT新能源汽车电池材料公司发展战略研究[D]. 南宁: 广西大学,2022.
[14] 杨雪艳. 基于实车数据的锂离子电池荷电状态估计研究[D]. 成都: 西南交通大学,2022.
[15] 王子杨. 中国新能源汽车产业震荡的形成机制及对策研究[D]. 长沙:中南大学,2022.
[16] 马冬雪. 我国新能源汽车动力电池回收利用的法律规制[D]. 北京: 华北电力大学(北京),2022.
[17] 张竟博,张龙华,何玉,等.锂离子电池用二硫化锡基负极材料研究进展[J/OL].化工新型材料. (2025-03-31)[2025-04-03]. https://doi.org/10.19817/j.cnki.issn1006-3536.2026.01.033.
[18] 史东,苏蕊颖,毕淑敏,等.锂离子电池用自支撑碳负极材料PAN/CNCs的制备及其性能研究[J/OL].化工新型材料. (2025-03-28)[2025-04-03]. http://kns.cnki.net/kcms/detail/11.2357.TQ.20250328.1549.002.html.
[19] 周丽萍,周德清,郑锋华,等.锂离子电池Si@Void@C复合负极材料的制备及其应用[J].储能科学与技术,2025,14(3):1115-1122.
[20] 李倩,李常林,王硕然,等.二硫化锡基钠离子电池负极材料研究进展[J].有色金属(中英文),2025,15(4):525-535.
[21] LEI C.New energy vehicle battery state of charge prediction based on XGBoost algorithm and RF fusion[J].Energy Informatics,2024,7(1):115.
[22] LIANG X M,WANG P,CAO X, et al.Research on improving the safety of new energy vehicles exploits vehicle operating data[J].Safety Science,2025,181:106681.
[23] LIU H X, LIANG Y.Comprehensive testing technology for new energy vehicle power batteries based on improved particle swarm optimization[J].Energy Informatics,2024,7(1):49.
[24] YAN Y, LUO W, WANG Z F, et al.Fault diagnosis of lithium-ion battery sensors based on multi-method fusion[J]. Journal of Energy Storage, 2024, 85: 110969.
[25] ZHENG L, HUANG H, LIU R, et al.A novel data-driven approach to lithium-ion battery dynamic charge state capture for new energy electric vehicles[J]. Advanced Theory and Simulations, 2024, 7(4): 2300795.
[26] CHEN C, LI Z H, WEI J.Estimation of lithium-ion battery state of charge based on genetic algorithm support vector regression under multiple temperatures[J].Electronics,2023,12(21): 4433.
[27] GONG H W, HANSEN T.The rise of China's new energy vehicle lithium-ion battery industry: the coevolution of battery technological innovation systems and policies[J].Environmental Innovation and Societal Transitions,2023,46: 100689.
[28] MENG L H.Research and analysis of electric vehicle fire accidents and review of lithium-ion battery thermal runaway mechanism[J].International Journal of New Developments in Engineering and Society,2022,6(2):6-14.
[29] YAO J T, ZHU G Z, HUANG J R, et al.Si/Graphite@C composite fabricated by electrostatic self-assembly and following thermal treatment as an anode material for lithium-ion battery[J]. Molecules,2024,29(17):4108.
[1] WEI Jun, HAN Jiang, ZUO Guizhong, WU Jiefeng, HU Yufeng, SHANG Mingming. Development and Testing of Air Tightness Test System for Divertor of EAST [J]. VACUUM, 2025, 62(4): 1-6.
[2] WANG Zhenhong, WANG Benlong, CHE Enlin, SU Ning, LIU Jun. Safety Analysis of the Hydrogenation and Dehydrogenation Process of Zirconium-2 Powder [J]. VACUUM, 2025, 62(3): 38-41.
[3] LUO Junwen. Research on Key Technologies of Vacuum Magnetron Sputtering Double-Sided Copper Coating on Ultra-Thin Flexible Substrates [J]. VACUUM, 2025, 62(3): 53-57.
[4] TANG Rong, GUAN Jie, LU Shaobo, LI Runxia, HAN Yongchao. Development and Temperature Uniformity Measurement of Large Metal Sealed Vacuum Furnace [J]. VACUUM, 2025, 62(3): 84-88.
[5] SHEN Xiao, JIN Hai, ZHAN Heng, ZHANG Haotian, CHEN Zhou. Preparation and Characterization of Particle Modified Composite Vacuum Insulation Panels [J]. VACUUM, 2025, 62(2): 22-27.
[6] SONG Tao, ZHANG Baicheng, JIANG Zhenghe, ZHANG Liyuan. Design and Research on Vacuum Chamber of Square Electron Beam Melting Furnace [J]. VACUUM, 2025, 62(2): 42-46.
[7] TIAN Wenjuan, HE Xiaobin, JIAO Binbin. Research on the Technology of RF Plasma Degluing and Surface Cleaning [J]. VACUUM, 2025, 62(2): 56-61.
[8] LIU Weidong, JIN Hai, ZHAN Heng, MIAO Jifan, CHEN Zhou. Preparation and Performance Studies of Nano-SiO2 Aerogel Composite Core Vacuum Insulating Panels [J]. VACUUM, 2025, 62(1): 49-56.
[9] WANG Song-lin, ZHANG Jian-fu, MI Gao-yuan, YIN Wan-hong, LIU Qing-long, ZHAO Hong-jun, ZHANG Xiang-ming. Design Method and Application of Wavelength Error Compensation for Multi-band Films [J]. VACUUM, 2024, 61(6): 7-14.
[10] LU Guo-zhu. The Journal Vacuum (Shenyang) Started Publication at the Same Year as the Journal of Vacuum Science and Technology (USA) Prof. Nai-Heng Yang, as the founder of the journal Vacuum, had many discoveries to his credit [J]. VACUUM, 2024, 61(5): 1-5.
[11] SONG Tao, ZHANG Bai-cheng, WANG Chun-lei, JIANG Zheng-he. Design and Research on Vacuum System of Large Series Electron Beam Melting Furnace [J]. VACUUM, 2024, 61(4): 30-34.
[12] ZHAO Zhen-yun, CHEN Ding-jun, GUO Yuan-meng, YANG Hao, DONG Shuai, SUN Tie-sheng, HUANG Mei-dong. Hydrophobic Properties of Chromium Nitride Thin Films at Different Temperatures [J]. VACUUM, 2024, 61(1): 27-33.
[13] LIU Zhong-bo. Application of Vacuum System in Simulating Low-pressure Area Environment on Martian Surface [J]. VACUUM, 2024, 61(1): 64-67.
[14] CHE En-lin, WANG Zhen-hong, SU Ning, CHEN Ding, LIU Jun, CHENG Bo-long, DAI Yu-bo. Application of Hydrogenation Dehydrogenation Process in Powder Preparation of Zirconium-2 Alloy [J]. VACUUM, 2024, 61(1): 83-86.
[15] LIU Zhong-bo. Application of Vacuum in High Altitude Simulation Systems [J]. VACUUM, 2023, 60(6): 84-86.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LI De-tian, CHENG Yong-jun, ZHANG Hu-zhong, SUN Wen-jun, WANG Yong-jun, SUN Jian, LI Gang, . Preparations and applications of carbon nanotube field emitters[J]. VACUUM, 2018, 55(5): 1 -9 .
[2] ZHOU Bin-bin, ZHANG jian, HE Jian-feng, DONG Chang-kun. Carbon nanotube field emission cathode based on direct growth technique[J]. VACUUM, 2018, 55(5): 10 -14 .
[3] CHAI Xiao-tong, WANG Liang, WANG Yong-qing, LIU Ming-kun, LIU Xing-zhou, GAN Shu-yi. Operating parameter data acquisition system for single vacuum pump based on STM32F103 microcomputer[J]. VACUUM, 2018, 55(5): 15 -18 .
[4] LI Min-jiu, XIONG Tao, JIANG Ya-lan, HE Yan-bin, CHEN Qing-chuan. 20kV high voltage based on double transistor forward converter pulse power supply for metal deburring[J]. VACUUM, 2018, 55(5): 19 -24 .
[5] LIU Yan-wen, MENG Xian-zhan, TIAN Hong, LI Fen, SHI Wen-qi, ZHU Hong, GU Bing. Test of ultra high vacuum in space traveling-wave tube[J]. VACUUM, 2018, 55(5): 25 -28 .
[6] XU Fa-jian, WANG Hai-lei, ZHAO Cai-xia, HUANG Zhi-ting. Application of chemical gases vacuum-compression recovery system in environmental engineering[J]. VACUUM, 2018, 55(5): 29 -33 .
[7] XIE Yuan-hua, HAN Jin, ZHANG Zhi-jun, XU Cheng-hai. Discussion on present situation and development trend of vacuum conveying[J]. VACUUM, 2018, 55(5): 34 -37 .
[8] SUN Li-zhi, YAN Rong-xin, LI Tian-ye, JIA Rui-jin, LI Zheng, SUN Li-chen, WANG Yong, WANG Jian, . Research on distributing law of Xenon in big accumulation chamber[J]. VACUUM, 2018, 55(5): 38 -41 .
[9] HUANG Si, WANG Xue-qian, MO Yu-shi, ZHANG Zhan-fa, YING Bing. Experimental study on similarity law of liquid ring compressor performances[J]. VACUUM, 2018, 55(5): 42 -45 .
[10] CHANG Zhen-dong, MU Ren-de, HE Li-min, HUANG Guang-hong, LI Jian-ping. Reflectance spectroscopy study on TBCs prepared by EB-PVD[J]. VACUUM, 2018, 55(5): 46 -50 .