欢迎访问沈阳真空杂志社 Email Alert    RSS服务

VACUUM ›› 2025, Vol. 62 ›› Issue (5): 17-22.doi: 10.13385/j.cnki.vacuum.2025.05.03

• Measurement and Control • Previous Articles     Next Articles

Study on the Outgassing Performance of Graphite/Copper Composite

TAN Biao1,2, YU Jiebing1,2,3, WANG Pengcheng1,2,4, LI Yanmin5, LIU Jiaming1,2, LIU Shunming1,2, GUAN Yuhui1,2, SUN Xiaoyang1,2, WANG Yigang1,2, ZHU Bangle1,2   

  1. 1. Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China;
    2. Spallation Neutron Source Science Center, Dongguan 523808, China;
    3. University of Chinese Academy of Sciences, Beijing 100049, China;
    4. University of Science and Technology of China, Hefei 230029, China;
    5. Beijng Gangyan Diamond Products Company Carbide Branch, Beijing 102200, China
  • Received:2024-12-25 Published:2025-09-29

Abstract: To expand the application of graphite/copper composites in accelerators, powder metallurgy technology was used to prepare different doped graphite/copper composites. The effects of graphite content and doping elements on the relative density and outgassing rate of the composites were studied. The possibility of their application in beam collimators was evaluated. The results show that the relative density of undoped graphite/copper and nickel-coated flake graphite/copper composites is higher than 95%, while the relative density of other doped composites decreases with the increase of graphite content. The nickel-coated flake graphite/copper composites with graphite content of 30% show the lowest outgassing rate. A bake-out procedure can effectively reduce the degassing rate of composite materials. By combining an optimised fabrication route with a stringent bake-out protocol, the outgassing rate can be suppressed sufficiently to qualify Gr/Cu composites as collimator materials for the China Spallation Neutron Source accelerator.

Key words: graphite/copper composite, outgassing rate, residual gas analysis, relative density

CLC Number:  TB79;TB741

[1] TERUI S, ISHIBASHI T, ABE T, et al.Development of low-Z collimator for SuperKEKB[C]//Proceedings of IPAC2021. Campinas, 2021:3537-3540.
[2] DALLOCCHIO A, BERTARELLI A, ARNAU IZQUIERDO G, et al.Advanced materials for future phase II LHC collimators[C]//Proceedings of PAC09. Vancouver, 2009:2814-2816.
[3] GIL C S, KIM J H, KIM D H, et al.Beam dump development for a Korean proton accelerator[C]// Proceedings of HB2010. Morschach, 2010:563-566.
[4] WARSOP C M.Beam loss control on the ISIS synchrotron: simulations, measurements, upgrades[C]// AIP Conference Proceedings. 2003, 693:154-157.
[5] SIMOS N, CONOR J O, HURH P, et al.Long baseline neutrino experiment target material radiation damage studies using energetic protons of the Brookhaven linear isotope production(BLIP) facility[C]//Proceedings of HB2012. Beijing, 2012:471-475.
[6] TANG J Y, CHEN J F, ZOU Y.Combined momentum collimation studies in a high-intensity rapid cycling proton synchrotron[J].Physical Review Special Topics: Accelerators and Beams, 2011, 14(5):050103.
[7] SMITH H V, ADAMS D J, JONES B, et al.Activation models of the ISIS collectors[C]//Proceedings of IPAC2014. Dresden, 2014:893-895.
[8] STADLMANN J, BOYZK L, KOLLMUS H, et al.Collimation and material science studies (ColMat) at GSI[C]// Proceedings of IPAC2010. Kyoto, 2010:4241-4242.
[9] REDAELLI S.Do we really need a collimator upgrade?[C]//Proceedings of Chamonix 2012 workshop on LHC performance. Chamonix, 2012:352-356.
[10] YANG J Q, ZOU Y, TANG J Y.Collimation method studies for next-generation hadron colliders[J].Physical Review Accelerators and Beams, 2019, 22(2):023002.
[11] 杨建权. 超级质子对撞机SPPC束流准直方法的研究[D].北京:中国科学院大学,2019.
[12] QUARANTA E, BRUCE R, MEREGHETTI A, et al.Collimation cleaning at the LHC with advanced secondary collimator materials[C]//Proceedings of IPAC2015. Kyoto, 2015:4241-4242.
[13] MACIARIELLO F L, NUIRY F X, FOLCH R.et al.High intensity beam test of low Z materials for the upgrade of SPS-to-LHC transfer line collimators and LHC injection absorbers[C]//Proceedings of IPAC2016. Busan, 2016: 1218-1221.
[14] MARIANI N.Development of novel, advanced molybdenum-based composites for high energy physics applications[D]. Milan: Politecnico di Milano, 2014.
[15] GUARDIA-VALENZUELA J, BERTARELLI A, CARRA F, et al.Development and properties of high thermal conductivity molybdenum carbide-graphite composites[J]. Carbon, 2018, 135:72-84.
[16] SIMOS N, CHARITONIDIS N, SIMON P, et al.Proton irradiation effects in molybdenum-carbide-graphite composites[J]. Journal of Nuclear Materials, 2021, 553:153049.
[17] ACCETTURA C, BEGHI M, BERTARELLI A, et al.Ultra-high vacuum characterization of molybdenum-carbide graphite for HL-LHC collimators[C]//Proceedings of IPAC2019. Melbourne, 2019:1078-1081.
[18] BERTARELLI A.Novel materials for collimators at LHC and its upgrades[R].Lansing: HB2014 WorkshopEast, 2014.
[19] BERTARELLI A, ARNAU IZQUIERDO G, CARRA F, et al.Research and development of novel advanced materials for next-generation collimators[C]//Proceedings of IPAC2011. San Sebastian, 2011:2888-2890.
[20] SACROSTAN DE FRUTOS O, BERTARELLI A, BIANCHI L, et al. Thermo-physical and mechanical characterisation of novel materials under development for HL-LHC beam intercepting devices[C]//Proceedings of IPAC2017. Copenhagen, 2017: 3536-3539.
[21] KAMIYA J, BAGLIN V, BREGLIOZZI G, et al.Outgassing measurement of an LHC collimator and estimation for the NEG performances[J]. Vacuum, 2011, 85:1178-1181.
[22] BERTARELLI A, BERTHOME E, BOCCONE V, et al.An experiment to test advanced materials impacted by intense proton pulse at CERN HiRadMat facility[J]. Nuclear Instruments and Methods in Physics Research B, 2013, 308:88-99.
[23] 张海丰,崔倩月,郝俊杰, 等. 高导热低二次电子发射系数石墨/铜复合材料[J].真空电子技术,2021(5):37-40.
[24] 张俊龙,陈亚军,李晨, 等. 石墨含量对铜基石墨自润滑复合材料摩擦过程中石墨润滑膜的影响[J].轴承,2022(2):31-34.
[25] 张铭君,刘培,宋帅, 等. 制备工艺参数对超大颗粒石墨/铜基复合材料结构及相对密度的影响[J].中国有色金属学报,2022,32(2):406-415.
[26] 赵籍九,尹兆升. 粒子加速器技术[M]. 北京:高等教育出版社, 2006: 239.
[27] 董海义,宋洪,李琦, 等. 中国散裂中子源(CSNS)真空系统研制[J].真空, 2015,52(4):1-6.
[28] An Mey S.Thermodynamic re-evaliation of the Cu-Ni system[J]. CALPHAD, 1992, 16(3): 255-260.
[29] 熊伟. Ni合金相图、相平衡及相变的热力学研究[D]. 长沙:中南大学, 2010.
[30] WANG J, LIU C, LEINENBACH C, et al.Experimental investigation and thermodynamic assessment of the Cu-Sn-Ti ternary system[J]. Computer Coupling of Phase Diagrams and Thermochemistry, 2011, 35:82-94.
[31] 杨华扣. Cu-Ti、Co-Ti和Cu-Co-Ti体系的相图热力学研究[D]. 赣州:江西理工大学,2024.
[32] YU J B, KANG L, LI Y, et al.Exploration of the applications of graphite/copper composites in accelerators[J].Radiation Detection Technology and Methods, 2025, 9:51-60.
[33] 关玉慧,宋洪,董海义,等.常见放气率测试方法的量化比较[J].真空科学与技术学报,2020,40(6):524-530.
[34] 龙文元,熊伟,尧军平.等离子烧结制备CNTs增强Nb/Nb5Si3复合材料[J].特种铸造及有色合金,2015,35(2):119-123.
[35] 王玉金,崔磊,贾德昌,等. 反应热压烧结BN-ZrB2-ZrO2复合材料的显微组织与力学性能[J].稀有金属材料与工程, 2009, 38(增刊2):470-474.
[1] MAO Xin, FENG Si-qing, LIU Peng, PENG Xue-bing, WU Huan. Test of Outgassing Rates of Threaded Fasteners with Copper Anti-seize Coating [J]. VACUUM, 2024, 61(4): 80-84.
[2] ZHANG Hong-bo, QU Tian-liang, WANG Peng. High Vacuum Maintaining Technology for Hemispherical Resonator Gyro [J]. VACUUM, 2023, 60(4): 75-79.
[3] WANG Jing-zhe, ZHOU Fei-ge, FENG Hui-hua. Experimental Study on the Vacuum Outgassing Rate of FRP and Multilayer Insulation Materials [J]. VACUUM, 2023, 60(4): 65-68.
[4] LI Jin-ming, WANG Jin-wei, LIU Jun-nan, CHEN Ming. High-precision Measurement Device for Outgassing Rate of Vacuum Materials [J]. VACUUM, 2023, 60(4): 60-64.
[5] YU Kang-yuan, HE Yu-dan, YANG Bo, LUO Jiang-shan. Effect of Sputtering Voltage on Microstructure and Properties of Cu Foils Deposited by High Power Impulse Magnetron Sputtering [J]. VACUUM, 2023, 60(3): 1-4.
[6] LU Shao-bo, YAO Zheng, SONG Yan-peng, HAN Yong-chao, ZHANG Ji-feng, TANG Rong. Development of XHV System for Customized Vacuum Exhaust Process for Space TWTs [J]. VACUUM, 2022, 59(5): 50-54.
[7] ZHOU Jun, CAO Zeng, CAO Cheng-zhi, HUANG Xiang-mei, GAO Xiao-yan, HU Yi. Preliminary Results of Mass Spectrometry Measurements for HL-2M Tokamak [J]. VACUUM, 2022, 59(3): 68-73.
[8] HUANG Fan, LI Bin, LIU Yi-qun, CAO Hui. Influence of Paper Barcode on Helium Leak Detection Output of the Fuel Rod and Solution [J]. VACUUM, 2021, 58(5): 89-92.
[9] LI Xiao-feng, HUANG Qiang-hua, CHEN Guang-qi, HE Xiao-dong, ZHU Ming. Simulated Experimental Study on Vacuum Life of Cryogenic Insulated Cylinders [J]. VACUUM, 2020, 57(1): 56-61.
[10] LIU Shun-ming, SONG Hong, DONG Hai-yi, GUAN Yu-hui, LIU Sheng-hua. Applications of quadrupole mass spectrometer in drift tube linear accelerator [J]. VACUUM, 2018, 55(6): 5-9.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LI De-tian, CHENG Yong-jun, ZHANG Hu-zhong, SUN Wen-jun, WANG Yong-jun, SUN Jian, LI Gang, . Preparations and applications of carbon nanotube field emitters[J]. VACUUM, 2018, 55(5): 1 -9 .
[2] ZHOU Bin-bin, ZHANG jian, HE Jian-feng, DONG Chang-kun. Carbon nanotube field emission cathode based on direct growth technique[J]. VACUUM, 2018, 55(5): 10 -14 .
[3] CHAI Xiao-tong, WANG Liang, WANG Yong-qing, LIU Ming-kun, LIU Xing-zhou, GAN Shu-yi. Operating parameter data acquisition system for single vacuum pump based on STM32F103 microcomputer[J]. VACUUM, 2018, 55(5): 15 -18 .
[4] LI Min-jiu, XIONG Tao, JIANG Ya-lan, HE Yan-bin, CHEN Qing-chuan. 20kV high voltage based on double transistor forward converter pulse power supply for metal deburring[J]. VACUUM, 2018, 55(5): 19 -24 .
[5] LIU Yan-wen, MENG Xian-zhan, TIAN Hong, LI Fen, SHI Wen-qi, ZHU Hong, GU Bing. Test of ultra high vacuum in space traveling-wave tube[J]. VACUUM, 2018, 55(5): 25 -28 .
[6] XU Fa-jian, WANG Hai-lei, ZHAO Cai-xia, HUANG Zhi-ting. Application of chemical gases vacuum-compression recovery system in environmental engineering[J]. VACUUM, 2018, 55(5): 29 -33 .
[7] XIE Yuan-hua, HAN Jin, ZHANG Zhi-jun, XU Cheng-hai. Discussion on present situation and development trend of vacuum conveying[J]. VACUUM, 2018, 55(5): 34 -37 .
[8] SUN Li-zhi, YAN Rong-xin, LI Tian-ye, JIA Rui-jin, LI Zheng, SUN Li-chen, WANG Yong, WANG Jian, . Research on distributing law of Xenon in big accumulation chamber[J]. VACUUM, 2018, 55(5): 38 -41 .
[9] HUANG Si, WANG Xue-qian, MO Yu-shi, ZHANG Zhan-fa, YING Bing. Experimental study on similarity law of liquid ring compressor performances[J]. VACUUM, 2018, 55(5): 42 -45 .
[10] CHANG Zhen-dong, MU Ren-de, HE Li-min, HUANG Guang-hong, LI Jian-ping. Reflectance spectroscopy study on TBCs prepared by EB-PVD[J]. VACUUM, 2018, 55(5): 46 -50 .