欢迎访问沈阳真空杂志社 Email Alert    RSS服务

VACUUM ›› 2023, Vol. 60 ›› Issue (4): 75-79.doi: 10.13385/j.cnki.vacuum.2023.04.14

• Vacuum Acquisition System • Previous Articles     Next Articles

High Vacuum Maintaining Technology for Hemispherical Resonator Gyro

ZHANG Hong-bo, QU Tian-liang, WANG Peng   

  1. Huazhong Institute of Electro-Optics-Wuhan National Laboratory for Optoelectronics, Wuhan 430223, China
  • Received:2022-10-24 Online:2023-07-25 Published:2023-07-26

Abstract: The required vacuum of hemispherical resonator gyro inner cavity was confirmed by theoretic calculation, and the relation of vacuum of the inner cavity with increasing time was found according to the outgassing rate experimental test data. The appropriate getter was chosen, the absorbable capacity of getter was tested, and the equivalent outgassing rate of inner cavity with getter was measured. The test results indicate that the getter can meet the requirement of keeping high vacuum of hemispherical resonator gyro.

Key words: hemispherical resonator gyro, air damping, high vacuum, outgassing rate, getter

CLC Number:  TN248.1

[1] 潘瑶, 曲天良, 杨开勇, 等. 半球谐振陀螺研究现状与发展趋势[J]. 导航定位与授时, 2017, 4(2): 9-13.
[2] DELHAYE F, GIRAULT J P.HRG technological break though for advanced space launcher inertial reference system[C]//The 25th Saint Petersburg International conference on Integrated Navigation Systems.St.Petersburg. Russia: IEEE, 2018.
[3] 曲天良. 半球谐振陀螺研究现状、关键技术和发展趋势分析[J]. 光学与光电技术, 2022, 20(2): 1-16.
[4] 彭慧, 方针, 谭文跃, 等. 半球谐振陀螺发展的技术特征[J]. 导航定位与授时, 2019, 6(4): 108-114.
[5] JEANROY A, BOUVET A, REMILLIEUX G.HRG and marine applications[J]. Gyroscopy and Navigation, 2014, 5(2): 67-74.
[6] SHARMA N G, SUNDARARAJAN T, GAUTAM S S.Identification of limiting damping mechanisms in a high quality factor hybrid resonator of space application gyroscope[J]. Advances in Space Research, 2022, 69(3): 1662-1679.
[7] CHU J N, LIU X, LIU C L, et al.Effect of air damping on the vibration characteristics of hemispherical fused silica resonators[C]//2022 IEEE 5th International Conference on Electronics Technology(ICET). Chengdu: IEEE, 2022: 24-28.
[8] 马特维耶夫. 固态波陀螺仪导航系统[M]. 马菊红, 译. 哈尔滨: 哈尔滨工业大学出版社, 2012.
[9] 程雷, 崔云涛, 王妍妍, 等. 半球谐振陀螺真空度要求分析[J]. 中国惯性技术学报, 2020, 28(4): 510-514.
[10] 卢少波, 姚铮, 宋艳鹏, 等. 空间行波管专用排气工艺极高真空系统的研制[J]. 真空, 2022, 59(5): 50-54.
[11] NEMANIC V, BOGATAJ T.Outgassing of thin wall stainless steelchamber[J]. Vacuum, 1998, 50: 431-437.
[12] 陆勤龙, 孙文娟, 傅斌, 等. 超导接收机静态真空保持设计及分析[J]. 超导技术, 2018, 46(8): 50-53.
[13] 刘燕文, 孟宪展, 田宏, 等. 空间行波管极高真空的获得与测量[J]. 真空, 2018, 55(5): 25-28.
[14] 达道安, 李旺奎. 真空设计手册[M]. 北京: 国防工业出版社, 2004.
[15] 关玉慧, 宋洪, 董海义, 等. 常见放气率测试方法的量化比较[J]. 真空科学与技术学报, 2020, 40(6): 524-530.
[16] 陈奋策. Matlab在物理实验中的应用[M]. 厦门: 厦门大学出版社, 2009.
[17] 颜攀, 韩兴博, 冷海燕, 等. 非蒸散型吸气剂的研究进展[J]. 真空科学与技术学报, 2018, 38(8): 55-57.
[18] 张烁. 钛/锆基非蒸散型吸气剂选择性吸气性能研究[D]. 北京: 北京有色金属研究总院, 2021.
[19] YASUHIRO W, SHOTA M, TAKEHIRO K, et al.Nitrogen absorption behaviors of ZrVFe and related alloys[J]. Journal of Alloys and Compounds, 2018, 731: 423-427.
[20] 昝春燕, 冯玉才, 昝德海, 等. 静电陀螺维持真空的复合泵技术[J]. 中国惯性技术学报, 2006, 14(5): 650-656.
[21] FEDCHAK J A, SCHERSCHLIGT J, BARKER D, et al.Vacuum furnace for degassing stainless-steel vacuum components[J]. Journal of Vacuum Science & Technology A: Vacuum, Surface, Films, 2018, 36(2): 1-7.
[1] LI Jin-ming, WANG Jin-wei, LIU Jun-nan, CHEN Ming. High-precision Measurement Device for Outgassing Rate of Vacuum Materials [J]. VACUUM, 2023, 60(4): 60-64.
[2] WANG Jing-zhe, ZHOU Fei-ge, FENG Hui-hua. Experimental Study on the Vacuum Outgassing Rate of FRP and Multilayer Insulation Materials [J]. VACUUM, 2023, 60(4): 65-68.
[3] SUN Wen-jun, FENG Xin-ge, SONG Yi, PEI Xiao-qiang, WU Cheng-yao. Study on Surface Modification of Zr/ZrVFe Porous Getter Material [J]. VACUUM, 2022, 59(6): 17-21.
[4] LU Shao-bo, YAO Zheng, SONG Yan-peng, HAN Yong-chao, ZHANG Ji-feng, TANG Rong. Development of XHV System for Customized Vacuum Exhaust Process for Space TWTs [J]. VACUUM, 2022, 59(5): 50-54.
[5] ZHOU Yuan, RAN Ao, WU Yi-heng, XIE Yuan-hua, LIU Kun. Design and Analysis of High Vacuum Chamber for MEMS Ion Source Testing Based on ANSYS [J]. VACUUM, 2022, 59(3): 16-19.
[6] WANG Peng-cheng, SUN Xiao-yang, JING Han-tao, HUANG Tao, LIU Jia-ming, LIU Shun-ming, TAN Biao. The Vacuum System of Back-n at CSNS [J]. VACUUM, 2022, 59(3): 7-11.
[7] LUO Wei, LI Zhuo-hui, ZHOU Xiao-dong, WANG Xiao-zhan, SUN Cheng-kai, GUAN Yang, JIN Zhao-feng, LIU Hai-jing. Experimental Study on Thermal Connection Mode in Ultra-low Temperature Region [J]. VACUUM, 2022, 59(1): 64-67.
[8] HUANG Fan, LI Bin, LIU Yi-qun, CAO Hui. Influence of Paper Barcode on Helium Leak Detection Output of the Fuel Rod and Solution [J]. VACUUM, 2021, 58(5): 89-92.
[9] MA Yi-Gang, LI Zhi-hui. Application of Ultra-high and High Vacuum Technology [J]. VACUUM, 2021, 58(4): 98-102.
[10] LI Bo, LIU Jun-nan, ZHANG Min, XUE Song, CHEN Ming. Ion Pump Performance Test Used by Shanghai Synchrotron Radiation Facility [J]. VACUUM, 2021, 58(3): 13-16.
[11] SHI Yang, XIE Yong-qiang, WU Chun-hui, BAO Xiang, WANG Cheng-jun, WANG Yong-qing, ZHAO Xing-liang. Study on Effect of Material Outgassing on the Pressure Rise Rate in Vacuum Brazing System [J]. VACUUM, 2021, 58(2): 42-47.
[12] CAI Xiao, CAO Zeng, ZHANG Wei, LI Rui-jun, HUANG Yong. Development of Pre-pumping System for Vacuum Chamber of HL-2M [J]. VACUUM, 2021, 58(1): 33-37.
[13] LI Xiao-feng, HUANG Qiang-hua, CHEN Guang-qi, HE Xiao-dong, ZHU Ming. Simulated Experimental Study on Vacuum Life of Cryogenic Insulated Cylinders [J]. VACUUM, 2020, 57(1): 56-61.
[14] XING Yin-long, WU Jie-feng, LIU Zhi-hong, BO Li, ZHOU Neng-tao. Study on the Technology of Ultrahigh Vacuum Surface Treatment in 316LN Special-Shaped Vacuum Box [J]. VACUUM, 2019, 56(6): 27-29.
[15] WANG Bo-feng, HU Xu-hua, ZHOU Guan-Li, LI Hong-yu, ZHOU Jian-yong, WANG Xiao-xia, ZHANG Zhao-chuan. Design on vaccum degassing system of electron gun for microwave tubes [J]. VACUUM, 2019, 56(1): 6-10.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LI De-tian, CHENG Yong-jun, ZHANG Hu-zhong, SUN Wen-jun, WANG Yong-jun, SUN Jian, LI Gang, . Preparations and applications of carbon nanotube field emitters[J]. VACUUM, 2018, 55(5): 1 -9 .
[2] ZHOU Bin-bin, ZHANG jian, HE Jian-feng, DONG Chang-kun. Carbon nanotube field emission cathode based on direct growth technique[J]. VACUUM, 2018, 55(5): 10 -14 .
[3] CHAI Xiao-tong, WANG Liang, WANG Yong-qing, LIU Ming-kun, LIU Xing-zhou, GAN Shu-yi. Operating parameter data acquisition system for single vacuum pump based on STM32F103 microcomputer[J]. VACUUM, 2018, 55(5): 15 -18 .
[4] LI Min-jiu, XIONG Tao, JIANG Ya-lan, HE Yan-bin, CHEN Qing-chuan. 20kV high voltage based on double transistor forward converter pulse power supply for metal deburring[J]. VACUUM, 2018, 55(5): 19 -24 .
[5] LIU Yan-wen, MENG Xian-zhan, TIAN Hong, LI Fen, SHI Wen-qi, ZHU Hong, GU Bing. Test of ultra high vacuum in space traveling-wave tube[J]. VACUUM, 2018, 55(5): 25 -28 .
[6] XU Fa-jian, WANG Hai-lei, ZHAO Cai-xia, HUANG Zhi-ting. Application of chemical gases vacuum-compression recovery system in environmental engineering[J]. VACUUM, 2018, 55(5): 29 -33 .
[7] XIE Yuan-hua, HAN Jin, ZHANG Zhi-jun, XU Cheng-hai. Discussion on present situation and development trend of vacuum conveying[J]. VACUUM, 2018, 55(5): 34 -37 .
[8] SUN Li-zhi, YAN Rong-xin, LI Tian-ye, JIA Rui-jin, LI Zheng, SUN Li-chen, WANG Yong, WANG Jian, . Research on distributing law of Xenon in big accumulation chamber[J]. VACUUM, 2018, 55(5): 38 -41 .
[9] HUANG Si, WANG Xue-qian, MO Yu-shi, ZHANG Zhan-fa, YING Bing. Experimental study on similarity law of liquid ring compressor performances[J]. VACUUM, 2018, 55(5): 42 -45 .
[10] CHANG Zhen-dong, MU Ren-de, HE Li-min, HUANG Guang-hong, LI Jian-ping. Reflectance spectroscopy study on TBCs prepared by EB-PVD[J]. VACUUM, 2018, 55(5): 46 -50 .