欢迎访问沈阳真空杂志社 Email Alert    RSS服务

VACUUM ›› 2024, Vol. 61 ›› Issue (4): 80-84.doi: 10.13385/j.cnki.vacuum.2024.04.15

• Measurement and Control • Previous Articles     Next Articles

Test of Outgassing Rates of Threaded Fasteners with Copper Anti-seize Coating

MAO Xin1,2, FENG Si-qing1,2,3, LIU Peng1, PENG Xue-bing1, WU Huan1   

  1. 1. Institute of Plasma Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China;
    2. University of Science and Technology of China, Hefei 230026, China;
    3. Hefei Key Electrical Physical Equipment Manufacturing Co., Ltd., Hefei 230088, China
  • Received:2023-11-10 Online:2024-07-25 Published:2024-07-29

Abstract: Copper coating is one of the main means to solve the anti-seize problem of threaded fasteners in vacuum vessel during the running of fusion reactor. This work briefly introduces the coating copper procedure and the solution to pitting-attacks on the copper coating. Meanwhile, to satisfy the high vacuum requirement, the orifice conductance method was used to test the outgassing rates of threaded fasteners with copper coating. The impact of copper coating, environmental temperature, and other factors on the material outgassing rate was analyzed in detail. The results show that the desorption gas is composed of hydrogen, water, nitrogen, CO2, and the contained hydrogen rate does not meet the relevant requirements. This is bound up with coating copper process, test environment, test time and so on. It is necessary to control the test influential factors to achieve the anticipated outgassing rate requirements of material in vacuum vessel of fusion reactor.

Key words: standard threaded fastener, seizing, copper coating, outgassing rate

CLC Number:  TB74

[1] CHAPPUIS P, BARABASH V, EATON R, et al.Copper antiseize coating specification for invessel components[Z]. 2017.
[2] PEARCE R, WORTH L. ITER vacuum handbook[R/OL].2019-11-19. https://www.iter.org/technical-reports.
[3] 王勇, 李格. 永磁体钕铁硼的热出气率[J]. 真空科学与技术学报, 2000, 20(4): 296-299.
[4] 冯焱, 曾祥坡, 张涤新, 等. 小孔流导法材料放气率测量装置的设计[J]. 宇航计测技术, 2010, 30(3): 66-69.
[5] 张涤新, 曾祥坡, 冯焱, 等. 材料放气率测量方法评述[J]. 真空, 2010, 47(6): 1-5.
[6] 罗艳, 王魁波, 吴晓斌, 等. 高精度真空材料放气测试研究[J]. 真空科学与技术学报, 2016, 36(3): 251-257.
[7] BATTES K, DAY C, HAUER V.Outgassing rate measurements of stainless steel and polymers using the difference method[J]. Journal of Vacuum Science & Technology A, 2015, 33(2).: 021603.
[8] 关玉慧, 宋洪, 董海义, 等. 常见放气率测试方法的量化比较[J]. 真空科学与技术学报, 2020, 40(6): 524-530.
[9] 李津铭, 王进伟, 刘俊男, 等. 真空材料放气率高精度测量装置[J]. 真空, 2023, 60(4): 60-64.
[10] 冯思庆, 卯鑫, 刘鹏, 等. 聚变堆真空室用标准螺纹紧固件防咬死铜镀层麻点原因分析[J]. 电镀与涂饰,2023, 42(1): 66-72.
[11] ZOU C, SONG Y, WU H, et al.Outgassing measurements for the turn insulation of CFETR poloidal field coils[J]. Fusion Engineering and Design, 2016, 105: 101-103.
[12] 曾祥坡, 张涤新, 冯焱, 等. 小孔流导法测量材料放气率研究[J]. 真空, 2010, 47(3): 55-58.
[13] 达道安. 真空设计手册[M]. 3 版. 北京:国防工业出版社, 2004: 1040-1083.
[14] LUO Y, WU X, WANG K, et al.Comparative study on surface influence to outgassing performance of aluminum alloy[J]. Applied Surface Science, 2020, 502: 144166.
[15] 罗艳, 王魁波, 吴晓斌, 等. 电镀件的真空放气特性研究[J]. 真空科学与技术学报, 2022, 42(8): 578-583.
[16] 张亚平, 张绍裕, 刘炼, 等. 零件表面钝化处理对杜瓦放气率的影响[J]. 红外与激光工程, 2021, 50(5): 8-13.
[17] 余荣, 魏萌萌, 闫睿, 等. 一种基于对称结构的固体材料放气率测试装置设计[J]. 真空科学与技术学报,2023, 43(7): 577-582.
[18] AIELLO G, MEIER A, SCHERER T, et al.Outgassing measurements for the ITER EC H&CD upper launcher[J]. Fusion Engineering and Design, 2011, 86(9-11): 2474-2477.
[19] 连小晓, 杨传森, 吴端, 等. 真空保温杯常用材料放气特性研究[J]. 真空科学与技术学报, 2020, 40(5):485-489.
[20] FENG Y, DONG M, LI D, et al.Study on vacuum materials outgassing rate using the method of switching between two pumping paths[J]. Mapan, 2014, 29(4): 229-234.
[21] 冯焱, 董猛, 吴晓斌, 等. 基于分压力测量的真空材料放气率测试方法研究[J]. 真空, 2013, 50(4): 49-52.
[1] ZHANG Hong-bo, QU Tian-liang, WANG Peng. High Vacuum Maintaining Technology for Hemispherical Resonator Gyro [J]. VACUUM, 2023, 60(4): 75-79.
[2] WANG Jing-zhe, ZHOU Fei-ge, FENG Hui-hua. Experimental Study on the Vacuum Outgassing Rate of FRP and Multilayer Insulation Materials [J]. VACUUM, 2023, 60(4): 65-68.
[3] LI Jin-ming, WANG Jin-wei, LIU Jun-nan, CHEN Ming. High-precision Measurement Device for Outgassing Rate of Vacuum Materials [J]. VACUUM, 2023, 60(4): 60-64.
[4] ZHANG Yan-peng, CAO Zhi-qiang, FU Qiang, CAO Lei, LIU Xu. Study of the Influence of Process Parameters of Copper Coating Fabricated by Roll to Roll Machine on Electronic Property of Composite Current Collector [J]. VACUUM, 2023, 60(4): 8-12.
[5] LU Shao-bo, YAO Zheng, SONG Yan-peng, HAN Yong-chao, ZHANG Ji-feng, TANG Rong. Development of XHV System for Customized Vacuum Exhaust Process for Space TWTs [J]. VACUUM, 2022, 59(5): 50-54.
[6] HUANG Fan, LI Bin, LIU Yi-qun, CAO Hui. Influence of Paper Barcode on Helium Leak Detection Output of the Fuel Rod and Solution [J]. VACUUM, 2021, 58(5): 89-92.
[7] WANG Kun, WANG Shi-qing, LI Jian, DAN Min, CHEN Lun-jiang. Thickness Uniformity of Anti-Seizing Coating for Fasteners Prepared by Magnetron Sputtering [J]. VACUUM, 2021, 58(1): 67-71.
[8] LI Xiao-feng, HUANG Qiang-hua, CHEN Guang-qi, HE Xiao-dong, ZHU Ming. Simulated Experimental Study on Vacuum Life of Cryogenic Insulated Cylinders [J]. VACUUM, 2020, 57(1): 56-61.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LI De-tian, CHENG Yong-jun, ZHANG Hu-zhong, SUN Wen-jun, WANG Yong-jun, SUN Jian, LI Gang, . Preparations and applications of carbon nanotube field emitters[J]. VACUUM, 2018, 55(5): 1 -9 .
[2] ZHOU Bin-bin, ZHANG jian, HE Jian-feng, DONG Chang-kun. Carbon nanotube field emission cathode based on direct growth technique[J]. VACUUM, 2018, 55(5): 10 -14 .
[3] CHAI Xiao-tong, WANG Liang, WANG Yong-qing, LIU Ming-kun, LIU Xing-zhou, GAN Shu-yi. Operating parameter data acquisition system for single vacuum pump based on STM32F103 microcomputer[J]. VACUUM, 2018, 55(5): 15 -18 .
[4] LI Min-jiu, XIONG Tao, JIANG Ya-lan, HE Yan-bin, CHEN Qing-chuan. 20kV high voltage based on double transistor forward converter pulse power supply for metal deburring[J]. VACUUM, 2018, 55(5): 19 -24 .
[5] LIU Yan-wen, MENG Xian-zhan, TIAN Hong, LI Fen, SHI Wen-qi, ZHU Hong, GU Bing. Test of ultra high vacuum in space traveling-wave tube[J]. VACUUM, 2018, 55(5): 25 -28 .
[6] XU Fa-jian, WANG Hai-lei, ZHAO Cai-xia, HUANG Zhi-ting. Application of chemical gases vacuum-compression recovery system in environmental engineering[J]. VACUUM, 2018, 55(5): 29 -33 .
[7] XIE Yuan-hua, HAN Jin, ZHANG Zhi-jun, XU Cheng-hai. Discussion on present situation and development trend of vacuum conveying[J]. VACUUM, 2018, 55(5): 34 -37 .
[8] SUN Li-zhi, YAN Rong-xin, LI Tian-ye, JIA Rui-jin, LI Zheng, SUN Li-chen, WANG Yong, WANG Jian, . Research on distributing law of Xenon in big accumulation chamber[J]. VACUUM, 2018, 55(5): 38 -41 .
[9] HUANG Si, WANG Xue-qian, MO Yu-shi, ZHANG Zhan-fa, YING Bing. Experimental study on similarity law of liquid ring compressor performances[J]. VACUUM, 2018, 55(5): 42 -45 .
[10] CHANG Zhen-dong, MU Ren-de, HE Li-min, HUANG Guang-hong, LI Jian-ping. Reflectance spectroscopy study on TBCs prepared by EB-PVD[J]. VACUUM, 2018, 55(5): 46 -50 .