欢迎访问沈阳真空杂志社 Email Alert    RSS服务

VACUUM ›› 2022, Vol. 59 ›› Issue (3): 7-11.doi: 10.13385/j.cnki.vacuum.2022.03.02

• Vacuum Acquisition System • Previous Articles     Next Articles

The Vacuum System of Back-n at CSNS

WANG Peng-cheng1,2, SUN Xiao-yang1,2, JING Han-tao1,2, HUANG Tao1,2, LIU Jia-ming1,2, LIU Shun-ming1,2, TAN Biao1,2   

  1. 1. Institute of High Energy Physics(IHEP), Chinese Academy of Sciences(CAS), Beijing 100049, China;
    2. Spallation Neutron Source Science Center(SNSSC),Dongguan 523803, China
  • Received:2021-02-07 Online:2022-05-25 Published:2022-06-01

Abstract: In the China spallation neutron source(CSNS) large scientific platform, 1.6GeV high-energy protons produced by a high-energy proton accelerator are used to bombard a solid tungsten target. The back neutron beam generated in front of the target returns through the proton channel to the neutron experiment area is called the back neutron source(Back-n). It has the characteristics of wide energy spectrum(0-200MeV)and large neutron yield(2×1016n/s), which is suitable for nuclear data measurement and other high-energy physics research. The Back-n vacuum system consists of a 26m ultra-high vacuum system shared with the high-energy proton beam and a 54m high vacuum system dedicated to the passage of the neutron beam. The two vacuum systems adopt different vacuum acquisition schemes and process routes,and are separated by a neutron beam window. An ultra-high vacuum gate valve is installed on the ultra-high vacuum side to prevent the damage of the neutron beam window from affecting the operation of the accelerator. This article introduces the design and operation of the Back-n vacuum system. The establishment of the vacuum system provides high-quality vacuum conditions for the experimental research of the Back-n.

Key words: Back-n, ultra-high/high vacuum system, operation

CLC Number: 

  • TL503.7
[1] WANG S, FANG S X, FU S N, et al.Introduction to the overall physics design of CSNS accelerators[J]. Chinese Physics C, 2009, 33(S2): 1-3.
[2] WEI J, FANG S X, CAO J S, et al.China spallation neutron source: Accelerator design iterations and R&D status[J]. Journal of the Korean Physical Society, 2007, 50(9): 1377-1384.
[3] TANG J Y, AN Q, BAI J B, et al.Back-n white neutron source at CSNS and its applications[J]. Nuclear Science and Techniques, 2021, 32: 11
[4] 唐靖宇, 安琪, 白怀勇, 等. 中国第一台高性能白光中子源——CSNS反角白光中子源及其应用[J]. 原子能科学技术, 2019, 53(10): 2012-2022.
[5] 董海义, 宋洪, 李琦, 等. 中国散裂中子源(CSNS)真空系统研制[J]. 真空, 2015, 52(4): 1-6.
[6] ZHANG L Y, JING H T, TANG J Y, et al.Design of back-streaming white neutron beam line at CSNS[J]. Applied Radiation and Isotopes, 2018, 132: 212-221.
[7] JING H T, TANG J Y, TANG H Q, et al.Studies of back-streaming white neutrons at CSNS[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2010, 621(1/2/3): 91-96.
[8] 唐靖宇, 敬罕涛, 夏海鸿, 等. 先进裂变核能的关键核数据测量和CSNS白光中子源[J]. 原子能科学技术, 2013, 47(7): 1089-1095.
[9] 鲍杰, 陈永浩, 张显鹏, 等. 中国散裂中子源反角白光中子束流参数的初步测量[J]. 物理学报, 2019, 68(8): 38-47.
[10] 韩长材, 欧阳晓平, 张显鹏, 等. 中国散裂中子源反角白光中子束斑测量[J]. 原子能科学技术, 2020, 54(3): 385-393.
[11] 陈明, 薛松, 周泽宇, 等. 铬锆铜材料的热出气性能研究[J]. 真空科学与技术学报, 2021, 41(8): 766-769.
[12] 刘建龙, 蔺晓建, 蒙峻, 等. 同步加速器装置中多丝束流剖面探测结构材料出气率测量[J]. 真空科学与技术学报, 2018, 38(12): 1029-1032.
[13] 关玉慧, 宋洪, 董海义, 等. 常见放气率测试方法的量化比较[J]. 真空科学与技术学报, 2020, 40(6): 524-530.
[14] 邢银龙, 刘志宏, 吴杰峰, 等. ITER超导磁体绝缘玻璃纤维放气性能分析[J]. 真空, 2017, 54(5): 52-55.
[15] 罗艳, 王魁波, 张罗莎, 等. 聚合物的放气分率与放气模型研究[J]. 真空科学与技术学报, 2015, 35(9): 1100-1104.
[16] GRINHAM R, CHEW D A.A review of outgassing and methods for its reduction[J]. Applied Science and Convergence Technology, 2017, 26(5): 95-109.
[1] LI Bo, LIU Jun-nan, ZHANG Min, XUE Song, CHEN Ming. Ion Pump Performance Test Used by Shanghai Synchrotron Radiation Facility [J]. VACUUM, 2021, 58(3): 13-16.
[2] WANG Peng-cheng, HUANG tao, LIU Jia-ming, SUN Xiao-yang, LIU Shun-ming, DONG Hai-yi. The Vacuum System of LRBT at CSNS [J]. VACUUM, 2019, 56(5): 21-25.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LI De-tian, CHENG Yong-jun, ZHANG Hu-zhong, SUN Wen-jun, WANG Yong-jun, SUN Jian, LI Gang, . Preparations and applications of carbon nanotube field emitters[J]. VACUUM, 2018, 55(5): 1 -9 .
[2] ZHOU Bin-bin, ZHANG jian, HE Jian-feng, DONG Chang-kun. Carbon nanotube field emission cathode based on direct growth technique[J]. VACUUM, 2018, 55(5): 10 -14 .
[3] LI Zhi-sheng. Development of ultra large shielded door for infrared calibration in simulated space environment[J]. VACUUM, 2018, 55(5): 66 -70 .
[4] ZHENG Lie, LI Hong. Design of 200kV/2mA continuous adjustable DC high voltage generator[J]. VACUUM, 2018, 55(6): 10 -13 .
[5] CHAI Xiao-tong, WANG Liang, WANG Yong-qing, LIU Ming-kun, LIU Xing-zhou, GAN Shu-yi. Operating parameter data acquisition system for single vacuum pump based on STM32F103 microcomputer[J]. VACUUM, 2018, 55(5): 15 -18 .
[6] SUN Li-zhi, YAN Rong-xin, LI Tian-ye, JIA Rui-jin, LI Zheng, SUN Li-chen, WANG Yong, WANG Jian, . Research on distributing law of Xenon in big accumulation chamber[J]. VACUUM, 2018, 55(5): 38 -41 .
[7] HUANG Si, WANG Xue-qian, MO Yu-shi, ZHANG Zhan-fa, YING Bing. Experimental study on similarity law of liquid ring compressor performances[J]. VACUUM, 2018, 55(5): 42 -45 .
[8] JI Ming, SUN Liang, YANG Min-bo. Design of automatic sealing and locking scheme for lunar sample[J]. VACUUM, 2018, 55(6): 24 -27 .
[9] LI Min-jiu, XIONG Tao, JIANG Ya-lan, HE Yan-bin, CHEN Qing-chuan. 20kV high voltage based on double transistor forward converter pulse power supply for metal deburring[J]. VACUUM, 2018, 55(5): 19 -24 .
[10] LIU Yan-wen, MENG Xian-zhan, TIAN Hong, LI Fen, SHI Wen-qi, ZHU Hong, GU Bing. Test of ultra high vacuum in space traveling-wave tube[J]. VACUUM, 2018, 55(5): 25 -28 .