欢迎访问沈阳真空杂志社 Email Alert    RSS服务

VACUUM ›› 2022, Vol. 59 ›› Issue (3): 12-15.doi: 10.13385/j.cnki.vacuum.2022.03.03

• Vacuum Acquisition System • Previous Articles     Next Articles

Numerical Simulation on Internal Pressure Variation of Test Specimens During Vacuum Test

LIU Sheng, CUI Yu-hao, DOU Ren-chao, SHI Li-xia, SUN Li-chen, REN Guo-hua, YAN Rong-xin   

  1. Beijing Institute of Spacecraft Environment Engineering, Beijing 100094, China
  • Received:2021-05-31 Online:2022-05-25 Published:2022-06-01

Abstract: Nowadays, more and more vacuum test need to detect pressure inside the test specimens. Although direct installation of sensors is the most effective and accurate way to measure the pressure of the test specimens. However sometimes sensors cannot be installed in the test specimens, which makes direct measurement difficult to be realized. In this paper, internal pressure of test specimens under molecular flow was simulated by the method of Monte Carlo. Geometric model of test specimens were established. Material degassing quantity was considered. The variation of vacuum degree with time was calculated under molecule flow. This paper provides a theoretical basis for the pressure prediction of specific location during vacuum test.

Key words: vacuum degree, Monte Carlo method, molecule flow, numerical simulation

CLC Number: 

  • TB752
[1] 庄建宏, 杨生胜, 郭兴, 等. 航天器材料真空出气预测模型研究[J]. 真空科学与技术学报, 2017, 37(10): 946-950.
[2] 孙玉玮, 王洪兴, 杜春林, 等. 航天器热真空试验过程中星内气体压力变化研究[J]. 真空科学与技术学报, 2019, 39(3): 13-18.
[3] CHIN K C, GREEN N W, BRANDON E J.Evaluation of supercapacitors for space applications under thermal vacuum conditions[J]. Journal of Power Sources, 2018, 379: 155-159.
[4] 经贵如, 沈亮, 王学强, 等. 航天器太阳电池阵驱动机构导电滑环真空充放电实验研究[J]. 航天器环境工程, 2021, 38(2): 166-170.
[5] 董栋, 景加荣, 董德胜, 等. 航天器防污染真空试验设备[J]. 真空, 2021, 58(1): 51-56.
[6] PASTORE R, DELFINI A, ALBANO M, et al.Outgassing effect in polymeric composites exposed to space environment thermal-vacuum conditions[J]. Acta Astronautica, 2020, 170: 466-471.
[7] 达道安. 真空设计手册[M]. 北京: 国防工业出版社, 2004.
[8] 崔寓淏, 窦仁超, 王凯, 等. 基于蒙特卡洛法溅射离子泵泵腔结构研究[J]. 真空科学与技术学报, 2019, 39(2): 107-110.
[9] 孔源. 多级干式罗茨真空泵实际抽速计算的研究[D]. 沈阳: 东北大学, 2008.
[10] 温燕修. 直圆管道内两种流态下气体流动的模拟计算[D]. 沈阳: 东北大学, 2009.
[11] RASSAMAKIN B, BAISKOV N, OSTAPCHUK S, et al.Thermal vacuum test of nano-satellite PolyITAN-2-SAU[C]// 2016 International Conference on Electronics and Information Technology(EIT). Odessa: IEEE, 2016: 1-5.
[12] 冯玉国. 气体粘滞流流导计算的意见[J]. 真空, 2003(3): 38-39.
[13] 范平. 椭圆截面管道的流导计算[J]. 深圳大学学报(理工版), 1989(1): 63-68.
[14] 张以忱, 黄化岩, 张国庆, 等. 真空管道流导计算中平均压力取值的误差分析与计算方法[J]. 真空, 2013, 50(3): 23-25.
[15] 范平, 赖国燕. 全压强范围内圆截面短管道的流导计算[J]. 真空科学与技术, 1996, 16(5): 379-382.
[16] 陈涛, 李玉忠, 许忠旭, 等. 真空热试验中材料放气的放气量及其导热问题[J]. 航天器环境工程, 2006, 23(2): 103-106.
[17] 汪力, 闫荣鑫, 孙立臣, 等. 超高真空设备的放气分析[J]. 航天器环境工程, 2009, 26(2): 158-161.
[18] 刘保杰, 许淑艳. 核技术应用研究中的蒙特卡罗计算问题[C]//第一届中国核技术及应用研究学术研讨会. 上海: 中国核物理学会, 2006.
[19] 于治明, 巴德纯, 杨乃恒. 直接模拟蒙特卡罗法及其在真空泵性能计算中的应用[J]. 真空, 2006(1): 9-14.
[20] 王继常, 杨乃恒. 真空系统管路元件流导几率的蒙特卡洛法计算[J]. 真空科学与技术, 1987(5): 18-22.
[21] 徐洪杰, 禾田道治. 低真空中SPIG性能的蒙特卡罗模拟研究[J]. 核技术, 1995, 18(9): 513-521.
[22] KIM S H, SEO H S, YOU J H, et al.Development and verification of thermal analysis model for thermal vacuum test of satellite components[J]. Journal of the Korean Society for Aeronautical & Space Sciences, 2010, 38(8): 842-847.
[23] LEE J J, KIM H K, HYUN B S.The correlation of satellite thermal mathematical model using results of thermal vacuum test on structure-thermal model[J]. Journal of the Korean Society for Aeronautical & Space Sciences, 2009, 37(9): 916-922.
[1] WANG Jun-wei, GONG Jie, DING Wen-jing, XU Jing-hao, GU Miao, ZHANG Li-ming. Numerical Simulation and Analysis of Spatial Rapid Decompression Process Based on Dynamic Grid [J]. VACUUM, 2022, 59(2): 32-37.
[2] LI Cheng-ming, SU Ning, LI Lin, YAO Wei-zhen, YANG Shao-yan. Flow Field Analysis and Large-Scale Material Growth in a Vertical Graded Varying Velocity Hydride Vapor Phase Epitaxy(HVPE) Reactor [J]. VACUUM, 2021, 58(2): 1-5.
[3] ZHU Zhi-peng, QIN Bin-wei, ZHANG Ying-li, YUE Xiang-ji, BA De-chun. Experimental Study on Particle Image Velocimetry of Rarefied Gas Flow [J]. VACUUM, 2021, 58(1): 38-44.
[4] CUI Yu-hao, DOU Ren-chao, SHI Li-xia, LIU Xing-yue. Influence of Ionization Gauge Position on Measurements [J]. VACUUM, 2020, 57(5): 57-60.
[5] ZHAO Jie, XV Li, LI Jian, WANG Kun, WANG Shi-qing. Numerical Simulation and Analysis of Discharge Plasma in Hall Thruster [J]. VACUUM, 2020, 57(4): 54-59.
[6] KONG Yuan, ZHANG Hai-ou, GAO Jian-cheng, CHEN Xi, WANG Gui-lan. Numerical Simulation of Multi-Scale Double Time Steps Multi-Physical Fields During Laser Metal Melting Deposition Process [J]. VACUUM, 2020, 57(4): 77-84.
[7] ZHAO Yu-hui, ZHAO Ji-bin, WANG Zhi-guo, WANG Fu-yu. Research on the Stress Control Methods of Inconel625Nickel-Based Alloys Fabricated by Laser Melting Additive Manufacturing [J]. VACUUM, 2020, 57(3): 73-79.
[8] DENG Wen-yu, DUAN Yong-li, QI Li-jun, SUN Bao-yu. Computational Fluid Dynamics Simulation of Gas Flow in Single-side Dry Scroll Vacuum Pump [J]. VACUUM, 2019, 56(4): 53-58.
[9] LI Lin, LI Cheng-ming, YANG Gong-shou, HU Xi-duo, YANG Shao-yan, SU Ning. Numeric simulation of three-layer hot-wall metal organic chemical vapor deposition (MOCVD) flow fields [J]. VACUUM, 2019, 56(1): 34-38.
[10] CHEN Wen-bo, CHEN Lun-jiang, Liu Chuan-dong, CHENG Chang-ming, TONG Hong-hui, ZHU Hai-long. Numerical simulation of a DC arc thermal plasma torch [J]. VACUUM, 2019, 56(1): 56-58.
[11] WANG Xiao-dong, WU Hong-yue, ZHANG Guang-li, LI He, SUN Hao, DONG Jing-liang, TU Ji-yuan. Computational fluid dynamics approach and its applications in vacuum technology [J]. VACUUM, 2018, 55(6): 45-48.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LI De-tian, CHENG Yong-jun, ZHANG Hu-zhong, SUN Wen-jun, WANG Yong-jun, SUN Jian, LI Gang, . Preparations and applications of carbon nanotube field emitters[J]. VACUUM, 2018, 55(5): 1 -9 .
[2] ZHOU Bin-bin, ZHANG jian, HE Jian-feng, DONG Chang-kun. Carbon nanotube field emission cathode based on direct growth technique[J]. VACUUM, 2018, 55(5): 10 -14 .
[3] LI Zhi-sheng. Development of ultra large shielded door for infrared calibration in simulated space environment[J]. VACUUM, 2018, 55(5): 66 -70 .
[4] ZHENG Lie, LI Hong. Design of 200kV/2mA continuous adjustable DC high voltage generator[J]. VACUUM, 2018, 55(6): 10 -13 .
[5] CHAI Xiao-tong, WANG Liang, WANG Yong-qing, LIU Ming-kun, LIU Xing-zhou, GAN Shu-yi. Operating parameter data acquisition system for single vacuum pump based on STM32F103 microcomputer[J]. VACUUM, 2018, 55(5): 15 -18 .
[6] SUN Li-zhi, YAN Rong-xin, LI Tian-ye, JIA Rui-jin, LI Zheng, SUN Li-chen, WANG Yong, WANG Jian, . Research on distributing law of Xenon in big accumulation chamber[J]. VACUUM, 2018, 55(5): 38 -41 .
[7] HUANG Si, WANG Xue-qian, MO Yu-shi, ZHANG Zhan-fa, YING Bing. Experimental study on similarity law of liquid ring compressor performances[J]. VACUUM, 2018, 55(5): 42 -45 .
[8] JI Ming, SUN Liang, YANG Min-bo. Design of automatic sealing and locking scheme for lunar sample[J]. VACUUM, 2018, 55(6): 24 -27 .
[9] LI Min-jiu, XIONG Tao, JIANG Ya-lan, HE Yan-bin, CHEN Qing-chuan. 20kV high voltage based on double transistor forward converter pulse power supply for metal deburring[J]. VACUUM, 2018, 55(5): 19 -24 .
[10] LIU Yan-wen, MENG Xian-zhan, TIAN Hong, LI Fen, SHI Wen-qi, ZHU Hong, GU Bing. Test of ultra high vacuum in space traveling-wave tube[J]. VACUUM, 2018, 55(5): 25 -28 .