欢迎访问沈阳真空杂志社 Email Alert    RSS服务

VACUUM ›› 2022, Vol. 59 ›› Issue (6): 78-86.doi: 10.13385/j.cnki.vacuum.2022.06.14

• 3D Printing Technology • Previous Articles     Next Articles

Research Status on Quality Defect Formation Mechanism, Control Method of High Energy Beam Cladding Coating

ZHAI Yan-kun, BAI Xue-wei, ZHANG Feng-yu, XU Ming-ze, YUAN Ren-yue, CHEN Jun-yin, HUANG Hai-bo   

  1. College of Engineering, Shenyang Agricultural University, Shenyang 110866, China
  • Received:2021-12-24 Online:2022-11-25 Published:2022-12-05

Abstract: High energy beam cladding coating is likely to appear crack, porosity and other quality defects in the making, which hinders its application in industry. In this work, the causes of cracks in high energy beam cladding coatings are analyzed, and the current dominated temperature gradient and stress control approaches and research progress are summarized from three aspects, including preparation of functional gradient coating,application of auxiliary cladding technology and pretreating measures. The main problems of quality control of high energy beam cladding coatings are presented, and the development prospect of quality control of high energy beam cladding coating is analyzed.

Key words: high energy beam cladding, cladding layer crack, temperature gradient, thermal stress

CLC Number: 

  • TG174.4
[1] 崔佳鹏. 激光熔覆技术研究现状与发展趋势[J]. 农机使用与维修, 2019(12): 25.
[2] 李响, 来佑彬, 于锦, 等. 高能束熔覆制备耐磨涂层技术研究现状与展望[J]. 表面技术, 2021, 50(2): 134-147, 159.
[3] 朱乐乐, 张兵, 张仁杰, 等. 熔覆法制备复合材料的研究现状及进展[J]. 热加工工艺, 2015, 44(14): 16-20.
[4] 叶志鹏, 李骞, 雷柏茂, 等. 增材制造过程监控技术现状综述[J]. 电子产品可靠性与环境试验, 2018, 36(5): 77-82.
[5] 张津超, 石世宏, 龚燕琪, 等. 激光熔覆技术研究进展[J]. 表面技术, 2020, 49(10): 1-11.
[6] 张群莉, 王梁, 梅雪松, 等. 激光表面改性技术发展研究[J]. 中国工程科学, 2020, 22(3): 71-77.
[7] 李广琪, 王丽芳, 赵亮, 等. 激光熔覆层裂纹问题的研究进展[J]. 热加工工艺, 2021, 50(16): 13-17.
[8] 王伟, 孙文磊, 于江通, 等. 激光熔覆工艺涂层裂纹控制的研究现状[J]. 热加工工艺, 2020, 49(20): 1-5.
[9] 李振纲, 彭波. 激光熔覆层裂纹的形成机理及控制措施[J]. 材料保护, 2016, 49(11): 61-66.
[10] 焦雄, 吴钢. 激光熔覆层裂纹问题的研究[J]. 科技信息, 2013(1): 223-224.
[11] 王凯, 石永军, 周小雨, 等. 熔覆技术的发展与展望[J]. 材料科学与工艺, 2021, 29(1): 81-90.
[12] 张坚, 吴文妮, 赵龙志. 激光熔覆研究现状及发展趋势[J]. 热加工工艺, 2013, 42(6): 131-134, 139.
[13] 时运, 杜晓东, 庄鹏程, 等. 等离子熔覆技术的研究现状及展望[J]. 表面技术, 2019, 48(12): 23-33.
[14] ZHANG J J, LIU J C, LIAO H M, et al.A review on relationship between morphology of boride of Fe-B alloys and the wear/corrosion resistantproperties and mechanisms[J]. Journal of Materials Research and Technology, 2019, 8: 6308-6320.
[15] 严大考, 张洁溪, 唐明奇, 等. 等离子熔覆技术的研究进展[J]. 热加工工艺, 2015, 44(4): 20-24.
[16] RIQUELME A, ESCALERA-RODRÍGUEZ M D, RODRIGO P, et al. Effect of alloy elements added on microstructure and hardening of Al/SiC laser clad coatings[J]. Journal of Alloys and Compounds, 2017, 727: 671-682.
[17] ZHAO Y, YU T B, SUN J Y, et al.Microstructure and properties of laser cladded B4C/TiC/Ni-based composite coating[J]. International Journal of Refractory Metals and Hard Materials, 2020, 86: 105112.
[18] TORABINEJAD V, ALIOFKHAZRAEI M, ASSAREH S, et al.Electrodeposition of Ni-Fe alloys, composites, and nano coatings-A review[J]. Journal of Alloys and Compounds, 2017, 691: 841-859.
[19] DAVIS T A, SHIN Y C.Vision-based clad height measurement[J]. Machine Vision & Applications, 2011, 22(1): 129-136.
[20] FATHI A, KHAJEPOUR A, DURALI M, et al.Geometry control of the deposited layer in a nonplanar laser cladding process using a variable structure controller[J]. Journal of Manufacturing Science & Engineering, 2008, 130(3): 876-877.
[21] 韩晨阳, 孙耀宁, 徐一飞, 等. 激光熔覆镍基合金磨损及电化学腐蚀性能研究[J]. 表面技术, 2021, 50(11): 103-110.
[22] 龚美美, 谢林圯, 吴腾, 等. TC4表面激光熔覆Fe60-TiO2涂层性能研究[J]. 激光技术,2022, 46(4): 551-555.
[23] SALEHI D, BRANDT M.Melt pool temperature control using LabVIEW in Nd: YAG laser blown powder cladding process[J]. International Journal of Advanced Manufacturing Technology, 2006, 29(3/4): 273-278.
[24] 李响. 深松铲等离子熔覆铁基合金涂层制备及耐磨性能研究[D]. 沈阳: 沈阳农业大学,2020.
[25] LIU J L, YU H J, CHEN C Z, et al.Research and development status of laser cladding on magnesium alloys: a review[J]. Optics and Lasers in Engineering, 2017, 93: 195-210.
[26] 王飞, 张超, 周隐玉, 等. 表面涂层技术的研究现状[J]. 热加工工艺, 2017, 46(10): 21-24.
[27] 张鬲君. 等离子熔覆技术应用分析[J]. 中原工学院学报, 2008(2): 41-43.
[28] 李敏, 李惠东, 李惠琪, 等. 等离子体表面改性技术的发展[J]. 金属热处理, 2004, 29(7): 5-9.
[29] 丁莹, 周泽华, 王泽华, 等. 等离子熔覆技术的研究现状及展望[J]. 陶瓷学报, 2012, 32(3): 405-410.
[30] YUAN R Y, BAI X W, LI H Z, et al.Effect of WC content on microstructure,hardness,and wear properties of plasma cladded Fe-Cr-C-WC coating[J]. Materials Research Express, 2021, 8(6): 066302.
[31] 杨波, 来佑彬, 王冬阳, 等. 高铬铁基合金等离子熔覆层表面硬度工艺研究[J]. 真空, 2020, 57(1): 88-93.
[32] 王波, 刘海浪, 祁正伟, 等. 电子束熔覆表面改性技术的研究进展[J]. 热加工工艺, 2018, 47(14): 19-22.
[33] 卢儒学, 刘海浪, 王小宇, 等. 电子束熔覆技术的研究现状与发展[J]. 热加工工艺, 2022, 51(8): 15-19.
[34] 徐珖韬, 刘海浪, 王小宇, 等. 基于电子束熔覆层质量的影响因素研究进展[J]. 热加工工艺, 2022, 51(6): 21-25.
[35] 张国培, 刘海浪, 黄以平, 等. 基于电子束的材料表面熔覆技术研究进展[J]. 热加工工艺, 2017, 46(2): 27-30.
[36] 宋强, 仇性启. 高能束技术在镁合金表面改性中的应用[J]. 材料导报, 2012, 26(5): 109-112.
[37] 王杨霄, 孙文磊, 刘金朵, 等. 增材再制造关键技术[J]. 新疆大学学报(自然科学版)(中英文), 2021, 38(2): 251-256.
[38] 刘海浪, 卢儒学, 陈健, 等. 镍基合金电子束熔覆表面改性及高温耐磨性研究[J]. 金属热处理, 2021, 46(4): 161-166.
[39] 陆斌锋, 唐普洪, 芦凤桂, 等. 激光与电子束熔覆(Cr, Fe)7C3复合层组织及耐磨性对比[J]. 中国表面工程, 2014, 27(4): 76-81.
[40] 王耀伟. TIG电弧熔覆碳化钨颗粒增强耐磨涂层工艺组织性能研究[D]. 天津: 天津大学, 2019.
[41] 郭煜. 电弧熔覆轻质多元合金熔覆层组织与性能研究[D]. 合肥: 安徽理工大学, 2020.
[42] 薛冰, 雷卫宁, 刘骁, 等. 低碳钢电弧熔覆增材层摩擦磨损及抗腐蚀性能[J]. 表面技术, 2020, 49(9): 225-232.
[43] 禹东, 刘奋成, 高健, 等. Q235钢表面CMT电弧熔覆镍基合金复合板的组织与性能研究[J]. 南昌航空大学学报(自然科学版), 2021, 35(3): 59-64.
[44] LIU J B, WANG L M, HUANG B X.Crack behavior of Fe-based coating by plasma cladding[J]. Applied Mechanics & Materials, 2012, 109: 145-149.
[45] 张传伟, 周楷文, 高中堂, 等. 激光熔覆滑靴材料基体熔覆层裂纹的产生机理[J]. 热加工工艺, 2019, 48(10): 148-151, 156.
[46] 侯锁霞, 任呈祥, 吴超, 等. 激光熔覆层裂纹的产生和抑制方法[J]. 材料导报, 2021, 35(增刊1): 352-356.
[47] 张杰, 李大胜, 魏天路, 等. 激光熔覆层裂纹问题研究进展[J]. 中原工学院学报, 2021, 32(1): 35-40.
[48] 吕晓仁, 马孝威, 董丽虹, 等. 激光熔覆层中孔隙、裂纹缺陷的形成机制及抑制方法研究进展[J]. 功能材料, 2020, 51(6): 6034-6043.
[49] 徐家乐, 李忠国, 郭华锋, 等. 激光熔覆层裂纹缺陷的研究进展[J]. 热加工工艺, 2013, 42(8): 6-9.
[50] FU F, CHANG G, ZHAO X, et al.Influence of laser spot diameter on cladding layer cracking[J]. Laser & Optoelectronics Progress, 2015, 52(3): 031401.
[51] 徐家乐. 电磁超声复合能场辅助激光熔覆钴基合金涂层组织及性能研究[D]. 镇江: 江苏大学, 2019.
[52] 刘鹏良. 激光熔覆裂纹产生影响因素与控制方法应用研究[D]. 乌鲁木齐: 新疆大学, 2019.
[53] 高晓菊, 王伯芊, 贾平斌, 等. 功能梯度材料的制备技术及其研发现状[J]. 材料导报, 2014, 28(1): 31-36.
[54] 张坚, 张官兵, 赵龙志, 等. 梯度功能材料制备技术的现状与展望[J]. 热加工工艺, 2013, 42(4): 7-10, 17.
[55] LEE Y D, ERDOGAN F.Interface cracking of FGM coatings under steady-state heat flow[J]. Engineering Fracture Mechanics, 1998, 59(3): 361-380.
[56] 李信, 刘海昌, 滕元成, 等. 功能梯度材料的研究现状及展望[J]. 材料导报, 2012, 26(增刊1): 370-373.
[57] 崔雪, 张松, 张春华, 等. 高性能梯度功能材料激光增材制造研究现状及展望[J]. 材料工程, 2020, 48(9): 13-23.
[58] 曹蕾蕾, 裴建中, 陈疆, 等. 功能梯度材料热应力研究进展[J]. 材料导报, 2014, 28(23): 46-50, 54.
[59] 杨英春. 大气等离子喷涂Al2O3-MgAl2O4多层型涂层及其介电性能[D]. 秦皇岛: 燕山大学, 2013.
[60] 牛犇. 激光快速成形法制备Ni/TiC功能梯度材料的结构设计及优化[D]. 北京: 北京理工大学, 2015.
[61] 沈大臣. Cr12MoV钢表面激光熔覆Ni/Ni-WC梯度涂层组织及性能研究[D]. 重庆: 重庆理工大学, 2020.
[62] 范鹏飞, 孙文磊, 张冠, 等. 激光熔覆铁基合金梯度涂层的组织性能及应用[J]. 材料导报, 2019, 33(22): 3806-3810.
[63] 陈滋鑫, 周后明, 徐采星. 激光熔覆裂纹研究现状[J]. 激光与光电子学进展, 2021, 58(7): 83-99.
[64] 蔡川雄, 刘洪喜, 蒋业华, 等. 交变磁场对激光熔覆Fe基复合涂层组织结构及其耐磨性的影响[J]. 摩擦学学报, 2013, 33(3): 229-235.
[65] 叶国威. 机械振动辅助激光增材制造In625合金的微观组织及力学性能基础研究[D]. 哈尔滨: 哈尔滨工业大学, 2020.
[66] YAN S, WU D, NIU F, et al. Al2O3-ZrO2 eutectic ceramic via ultrasonic-assisted laser engineered net shaping[J]. Ceramics International, 2017, 43(17): 15905-
15910.
[67] ZIMMERMANN G, PICKMANN C, SCHABERGER-ZIMMERMANN E, et al.Do rotating magnetic fields unconditionally lead to grain refinement?A case study for directionally solidified Al-10wt%Cu alloys[J]. Materialia, 2018, 3: 326-337.
[68] YU T, DENG Q L, ZHANG W, et al.Study on cracking mechanism of laser clad NiCrBSi coating[J]. Journal of Shanghai Jiaotong University, 2012, 46(7): 1043-1048.
[69] 宗磊. 交变磁场下铁基合金粉末激光熔层组织与性能研究[D]. 秦皇岛: 燕山大学, 2016.
[70] 吕政, 梁国星, 吕明, 等. 机械振动辅助激光熔覆WC/Co-Cr梯度涂层的显微组织[J]. 热加工工艺, 2021, 50(10): 86-89, 94.
[71] 孙铭含. 超声振动对等离子熔覆涂层裂纹及残余应力的影响研究[D]. 沈阳: 沈阳农业大学, 2021.
[72] LIU H X, XU Q, WANG C Q, et al.Corrosion and wear behavior of Ni60CuMoW coatings fabricated by combination of laser cladding and mechanical vibration processing[J]. Journal of Alloys and Compounds, 2015, 621: 357-363.
[73] 王新军, 闫迎亮. 磁场辅助激光熔覆316L不锈钢涂层的微结构及性能[J]. 激光与光电子学进展, 2020, 57(23): 184-189.
[74] 毛怀东. 激光熔覆层裂纹控制方法与实践[D]. 天津: 天津大学, 2007.
[75] 李洪玉, 魏连峰, 王泽明, 等. 预热温度对激光熔覆层组织和应力的影响[J]. 激光与光电子学进展, 2021, 58(7): 249-257.
[76] JIA Y, HAO N.Thermal-mechanical coupling finite element analysis of laser cladding process[C]//International Conference on Mechanic Automation & Control Engineering. Inner Mongolia: IEEE, 2011, 51: 4696-4699.
[77] JENDRZEJEWSKI R, SLIWINSKI G, KRAWCZUK M, et al.Temperature and stress fields induced during laser cladding[J]. Computers & Structures, 2004, 82(7/8): 653-658.
[78] 蔡春波. 激光熔覆再制造涂层残余应力研究[D]. 青岛: 中国石油大学(华东), 2017.
[1] XIN Xian-feng, LIU Lin-gen, LIN Guo-qiang, DONG Chuang, DING Wan-yu, ZHANG Shuang, WANG Qi-zhen, LI Jun, WAN Peng. Preparation and Properties of Zr55Cu30Al10Ni5 Amorphous Thin Films [J]. VACUUM, 2022, 59(5): 1-6.
[2] WANG Li-zhe, CAI Yan, ZHNG Ru-jing, HE Li-min, MU Ren-de. Influence of Aluminide Coating Prepared by Chemical Vapor Depositionon High-Temperature Protective Performance of Thermal Barrier Coating on Single Crystal Superalloy [J]. VACUUM, 2022, 59(4): 56-63.
[3] WAN Shu-hong, LIN Jing, FENG Shuai. Research Progress of Diamond Coated Tools Prepared by Hot Filament CVD [J]. VACUUM, 2022, 59(1): 40-47.
[4] WANG Yang, ZHANG Gao-hui, WANG Kai, YANG Rong-fei, LI Xiang, SUN Qi-xuan. Laser Ablative Characterization of Fire Resistance for the Titanium Alloy Ti6Al4V Surface by Ion Implanted Copper [J]. VACUUM, 2021, 58(5): 98-103.
[5] WU Zhong-can, LIU Liang-liang, TANG Wei; YANG Chao, MA Zheng-yong. Fabrication and Properties of Robust Superhydrophobic F-DLC Coatings [J]. VACUUM, 2019, 56(6): 30-35.
[6] LI Guo-hao, BA De-chun, WANG Dong, CHEN Hong-bin, ZHANG Hong-qi, DU Guang-yu. Research on Thermal Shock Performance of YSZ Coatings Deposited by EB-PVD [J]. VACUUM, 2020, 57(3): 1-4.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LI De-tian, CHENG Yong-jun, ZHANG Hu-zhong, SUN Wen-jun, WANG Yong-jun, SUN Jian, LI Gang, . Preparations and applications of carbon nanotube field emitters[J]. VACUUM, 2018, 55(5): 1 -9 .
[2] ZHOU Bin-bin, ZHANG jian, HE Jian-feng, DONG Chang-kun. Carbon nanotube field emission cathode based on direct growth technique[J]. VACUUM, 2018, 55(5): 10 -14 .
[3] LI Zhi-sheng. Development of ultra large shielded door for infrared calibration in simulated space environment[J]. VACUUM, 2018, 55(5): 66 -70 .
[4] ZHENG Lie, LI Hong. Design of 200kV/2mA continuous adjustable DC high voltage generator[J]. VACUUM, 2018, 55(6): 10 -13 .
[5] CHAI Xiao-tong, WANG Liang, WANG Yong-qing, LIU Ming-kun, LIU Xing-zhou, GAN Shu-yi. Operating parameter data acquisition system for single vacuum pump based on STM32F103 microcomputer[J]. VACUUM, 2018, 55(5): 15 -18 .
[6] SUN Li-zhi, YAN Rong-xin, LI Tian-ye, JIA Rui-jin, LI Zheng, SUN Li-chen, WANG Yong, WANG Jian, . Research on distributing law of Xenon in big accumulation chamber[J]. VACUUM, 2018, 55(5): 38 -41 .
[7] HUANG Si, WANG Xue-qian, MO Yu-shi, ZHANG Zhan-fa, YING Bing. Experimental study on similarity law of liquid ring compressor performances[J]. VACUUM, 2018, 55(5): 42 -45 .
[8] JI Ming, SUN Liang, YANG Min-bo. Design of automatic sealing and locking scheme for lunar sample[J]. VACUUM, 2018, 55(6): 24 -27 .
[9] LI Min-jiu, XIONG Tao, JIANG Ya-lan, HE Yan-bin, CHEN Qing-chuan. 20kV high voltage based on double transistor forward converter pulse power supply for metal deburring[J]. VACUUM, 2018, 55(5): 19 -24 .
[10] LIU Yan-wen, MENG Xian-zhan, TIAN Hong, LI Fen, SHI Wen-qi, ZHU Hong, GU Bing. Test of ultra high vacuum in space traveling-wave tube[J]. VACUUM, 2018, 55(5): 25 -28 .