欢迎访问沈阳真空杂志社 Email Alert    RSS服务

VACUUM ›› 2022, Vol. 59 ›› Issue (6): 87-92.doi: 10.13385/j.cnki.vacuum.2022.06.15

• 3D Printing Technology • Previous Articles     Next Articles

Research, Development Prospect of Vacuum Atomization Powdering Technology

FENG Jun-xiao, ZUO Ye, WANG Yong, ZHANG Zeng-hai, TENG Long, SHEN Zi-wei, JIN He, SONG Jing-si, ZHANG Zhe-kui   

  1. Shenyang Vacuum Technology Institute, Shenyang 110042, China
  • Received:2022-05-05 Online:2022-11-25 Published:2022-12-05

Abstract: As the main equipment for the industrial production of metal powder, vacuum atomization milling equipment is widely used in key areas including additive manufacturing, powder metallurgy, aerospace and medical treatment. This paper focuses on the most common vacuum atomization milling technology, and their characteristics and development directions are deeply studied and discussed. Firstly, the technical background of atomized milling and the common classification of current milling methods are briefly introduced, and then combined with the core performance indicators of the technology and equipment used by the major atomization milling equipment manufacturers and metal powder suppliers, the vacuum atomization milling methods including VIGA(vacuum induction-melting gas atomization), EIGA(electrode induction-melting inert gas atomization), VIGA-CC(water-cooled copper crucible vacuum induction-melting gas atomizing) and PREP (plasma rotating electrode-comminuting process)are described in detail. The future development direction of atomization milling technology and equipment is also prospected.

Key words: atomization powder, powder metallurgy, additive manufacturing

CLC Number: 

  • TF341.7
[1] 李清泉, 韩延良. 真空熔炼高压气体雾化制粉技术及设备[J]. 粉末冶金工业, 1996, 6(2): 27-31.
[2] TSANTRIZOS P G, ALLAIRE F, ENTEZARIAN M. Method of production of metal and ceramic powders by plasma atomization: US5707419A[P].1998-01-13.
[3] 曾克里, 罗浩, 朱杰, 等. 丝材等离子雾化钛合金粉末研究进展[J]. 粉末冶金工业, 2021, 31(6): 1-12.
[4] 张国庆, 刘娜, 李周. 高性能金属材料雾化与成形技术研究进展[J]. 航空材料学报, 2020, 40(3): 95-109.
[5] JIA W M, CHEN S Y, WEI M W, et al.Characteristics and printability of K417G nickel-base alloy powder prepared by VIGA method[J]. Powder Metal, 2019, 62(1): 30-37.
[6] 王晓鸣. 钢水中间包冶金技术[J]. 江苏冶金, 1995(6): 9-12.
[7] 曲选辉, 张国庆, 章林. 粉末冶金技术在航空发动机中的应用[J]. 航空材料学报, 2014, 34(1): 1-10.
[8] CARPENTER TECHNOLOGY.Whitepaper:electrode inert gas and plasma atomization comparison[EB/OL]. [2022- 05-05].https: //www.carpenteradditive.com/eiga-titanium-powder-whitepaper?hsCtaTracking=386c6613-5eaf-45c4-9b70-d50b98879141%7Cfe22b43f-7405-4963-b6ff-0d4ccb06af3f.
[9] 索吉斯·斯比坦斯, 马克思·温顿, 弗朗茨·法高斯, 等. 具有环状绕组的电极感应熔化(钝性)气体雾化线圈: CN202080057560.4[P].2022-04-01.
[10] 谢波, 李建军, 乔忠路. 电极感应气雾化法制备3D打印用TC4粉末增氧量研究[J]. 真空, 2020, 57(6): 80-83.
[11] ALD VACUUM TECHNOLOGIES.EIGA systems-electrode induction melting inert gas atomization systems for electrodes up to 150mm diameter and 1000mm length[EB/OL].[2022-05-05].https://www.ald-vt.com/cn/portfolio/engineering/vacuum-metallurgy/electrode-induction-melting-inert-gas-atomization/.
[12] 杨军, 王晓峰, 葛正浩. 气雾化法制备3D打印金属粉末的技术研究进展[J]. 粉末冶金工业, 2022, 32(1): 69-77.
[13] 赵少阳, 王利卿, 谈萍, 等. VIGA-CC法制备球形Ti-35.8Al-18.4Nb合金粉末及其性能研究[J]. 粉末冶金技术, 2020, 38(6): 443-448.
[14] 张国庆, 刘玉峰, 刘娜, 等. TiAl金属间化合物粉末冶金工艺研究进展[J]. 航空制造技术, 2019, 62(22): 38-42.
[15] 赵少阳, 谈萍, 汤慧萍, 等. 2种3D打印用雾化Ti-6Al-4V合金粉末的对比研究[J]. 钛工业进展, 2019, 36(4): 13-18.
[16] 孙念光, 陈斌科, 向长淑, 等. 等离子旋转电极雾化制粉技术现状和创新[J]. 粉末冶金工业, 2020, 30(5): 84-87.
[17] 张莹, 李世魁, 陈生大. 用等离子旋转电极法制取镍基高温合金粉末[J]. 粉末冶金工业, 1998(6): 13-18.
[18] 杨洪涛, 卢志辉, 孙志杨, 等. 等离子旋转电极雾化制粉设备国内研究现状[J]. 粉末冶金工业, 2021, 31(4): 88-93.
[19] KAUFMANN A. Production of pure,spherical powders: US3802816A[P].1972-06-22.
[20] 陶宇, 冯涤, 张义文, 等. PREP工艺参数对FGH95高温合金粉末特性的影响[J]. 钢铁研究学报, 2003, 15(5): 46-50.
[21] 赵风琴, 王长京. 等离子旋转电极制粉设备中的等离子发生器装置的设计与制造[J]. 稀有金属材料与工程, 1988(6): 66-70.
[22] 机械科学研究总院. 国内首台大型等离子旋转雾化制粉设备研制成功[EB/OL].(2011-03-16).http://www.sasac.gov.cn/n2588025/n2588124/c3906715/content.html.
[23] 高正江, 周香林, 李景昊, 等. 高性能球形金属粉末制备技术进展[J]. 热喷涂技术, 2018, 10(3): 1-9.
[24] 宋静思, 左野, 应冰, 等. 真空感应熔炼炉主流结构及未来发展[J]. 真空, 2022, 59(4): 70-75.
[25] 李建军, 孙足来, 宋青竹, 等. 真空半连续气雾化制粉炉: CN201920120858.X[P].2019-11-05.
[26] 吕威闫, 杨番, 韩国峰, 等. VIGA和EIGA气雾化法制备增材制造用低合金钢粉末[J]. 中国表面工程, 2020, 33(5): 115-122.
[27] GUO R P, XU L, ZONG B Y P, et al. Characterization of prealloyed Ti-6Al-4V powders from EIGA and PREP process and mechanical properties of HIPed powder compacts[J]. Acta Metallurgica Sinica(English Letters), 2017, 30(8): 735-744.
[28] 胡连喜, 冯小云. 粉末冶金高温合金研究及发展现状[J]. 粉末冶金工业, 2018, 28(4): 1-7.
[1] WU Fan, LIN Bo-chao, QUAN Yin-zhu, , CHEN Wei, YANG Yang. Review on Equipment and Application of Electron-beam Based Additive Manufacturing [J]. VACUUM, 2022, 59(1): 79-85.
[2] MA Yi-Gang, LI Zhi-hui. Application of Ultra-high and High Vacuum Technology [J]. VACUUM, 2021, 58(4): 98-102.
[3] XU Hai-ying, WANG Zhuang, SANG Xing-hua, YANG Bo, PENG Yong. Development of the Gas Discharger EB Gun of Electron Beam Coaxial Wire [J]. VACUUM, 2021, 58(2): 76-81.
[4] ZHAO Yu-hui, ZHAO Ji-bin, WANG Zhi-guo, WANG Fu-yu. Research on the Stress Control Methods of Inconel625Nickel-Based Alloys Fabricated by Laser Melting Additive Manufacturing [J]. VACUUM, 2020, 57(3): 73-79.
[5] LI Lun, ZHAO Ji-bin, ZHOU Bo, TIAN Tong-tong. Slicing Algorithm for Additional Manufacturing Based on Corner Table Data Structure [J]. VACUUM, 2020, 57(3): 84-88.
[6] ZHAO Ji-bin, LI Lun, ZHOU Bo, TIAN Tong-tong. Direction-parallel Filling Trajectory Generation Method for Sliced Profile in Additive Manufacturing [J]. VACUUM, 2020, 57(3): 89-93.
[7] LIU Dian-hai, LI Lun, ZHOU Bo, ZHAO Ji-bin. An Automatic Control Method Based on Laser Peening to Improve Residual Stress of Additive Manufacturing Parts [J]. VACUUM, 2020, 57(2): 83-87.
[8] ZHAO Yu-hui, ZHAO Ji-bin, WANG Zhi-guo. Research on Warp Distortion of Inconel 625 Nickel-Based Alloys Fabricated by Laser Melting Additive Manufacturing [J]. VACUUM, 2020, 57(2): 88-93.
[9] ZHAO Yu-hui, YAO Chao, WANG Zhi-guo. Research on Test, Prediction Method of Molten Pool by Laser Additive Maufacturing [J]. VACUUM, 2020, 57(1): 76-82.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LI De-tian, CHENG Yong-jun, ZHANG Hu-zhong, SUN Wen-jun, WANG Yong-jun, SUN Jian, LI Gang, . Preparations and applications of carbon nanotube field emitters[J]. VACUUM, 2018, 55(5): 1 -9 .
[2] ZHOU Bin-bin, ZHANG jian, HE Jian-feng, DONG Chang-kun. Carbon nanotube field emission cathode based on direct growth technique[J]. VACUUM, 2018, 55(5): 10 -14 .
[3] LI Zhi-sheng. Development of ultra large shielded door for infrared calibration in simulated space environment[J]. VACUUM, 2018, 55(5): 66 -70 .
[4] ZHENG Lie, LI Hong. Design of 200kV/2mA continuous adjustable DC high voltage generator[J]. VACUUM, 2018, 55(6): 10 -13 .
[5] CHAI Xiao-tong, WANG Liang, WANG Yong-qing, LIU Ming-kun, LIU Xing-zhou, GAN Shu-yi. Operating parameter data acquisition system for single vacuum pump based on STM32F103 microcomputer[J]. VACUUM, 2018, 55(5): 15 -18 .
[6] SUN Li-zhi, YAN Rong-xin, LI Tian-ye, JIA Rui-jin, LI Zheng, SUN Li-chen, WANG Yong, WANG Jian, . Research on distributing law of Xenon in big accumulation chamber[J]. VACUUM, 2018, 55(5): 38 -41 .
[7] HUANG Si, WANG Xue-qian, MO Yu-shi, ZHANG Zhan-fa, YING Bing. Experimental study on similarity law of liquid ring compressor performances[J]. VACUUM, 2018, 55(5): 42 -45 .
[8] JI Ming, SUN Liang, YANG Min-bo. Design of automatic sealing and locking scheme for lunar sample[J]. VACUUM, 2018, 55(6): 24 -27 .
[9] LI Min-jiu, XIONG Tao, JIANG Ya-lan, HE Yan-bin, CHEN Qing-chuan. 20kV high voltage based on double transistor forward converter pulse power supply for metal deburring[J]. VACUUM, 2018, 55(5): 19 -24 .
[10] LIU Yan-wen, MENG Xian-zhan, TIAN Hong, LI Fen, SHI Wen-qi, ZHU Hong, GU Bing. Test of ultra high vacuum in space traveling-wave tube[J]. VACUUM, 2018, 55(5): 25 -28 .