欢迎访问沈阳真空杂志社 Email Alert    RSS服务

VACUUM ›› 2024, Vol. 61 ›› Issue (4): 96-101.doi: 10.13385/j.cnki.vacuum.2024.04.18

• 3D Printing Technology • Previous Articles     Next Articles

Eddy Current Testing Simulation for Surface Defects for Laser Melting Deposition

CHEN Cheng1, ZHU Ming-liang1, LI Ming-yue2,3, HE Zhen-feng2, WANG Zhi-guo2, HE Chen2   

  1. 1. CCTEG Shenyang Research Institute Co., Ltd., Fushun 113122, China;
    2. Shenyang Institute of Automation, Chinese Academy of Science, Shenyang 110016, China;
    3. School of Materials, Shenyang University of Technology, Shenyang 110169, China
  • Received:2024-05-20 Online:2024-07-25 Published:2024-07-29

Abstract: Based on the requirements of eddy current testing for additive manufacturing, in view of the difficulty of signal interpretation and defect quantitative and qualitative analysis of eddy current testing, the finite element simulation technology was adopted to establish an eddy current testing model for surface defects of TC4 titanium alloy additive parts. The distribution of electromagnetic field inside and around the sample during the inspection process was obtained, the influence of the length, width and depth of defects on the magnetic field signal during the inspection was studied, and the experimental verification was carried out. The simulation results indicate that the detection signal gets stronger as the increase of the defect size in a certain range, and variations in the length, width and depth of defects will all affect the detection signal, which is in good coincidence with the experimental results.

Key words: additive manufacturing, eddy current testing, finite element simulation, titanium alloy, surface defect

CLC Number:  TG156

[1] 王向明. 飞机新概念结构设计与工程应用[J]. 航空科学技术, 2020, 31(4): 1-7.
[2] 高海瑞, 李继康, 张振武, 等. 多场调控金属激光增材制造研究现状与展望(特邀)[J]. 中国激光, 2024, 51(10): 99-121.
[3] 陈仲伟, 吴贤, 赵孟, 等. 增材制造钛合金的微铣削加工试验[J]. 南京航空航天大学学报, 2024, 56(3): 457-467.
[4] 吴圣川, 胡雅楠, 杨冰, 等. 增材制造材料缺陷表征及结构完整性评定方法研究综述[J]. 机械工程学报, 2021, 57(22): 3-34.
[5] PLESSIS A D, YADROITSEV I, YADROITSAVA I, et al.X-ray microcomputed tomography in additive manufacturing: a review of the current technology and applications[J]. 3D Printing and Additive Manufacturing, 2018, 5(3): 227-247.
[6] 胡婷萍, 高丽敏, 杨海楠. 航空航天用增材制造金属结构件的无损检测研究进展[J]. 航空制造技术, 2019, 62(8): 70-75.
[7] 李贵娥, 麻红昭, 沈家旗, 等. 电涡流检测技术及影响因素分析[J]. 传感技术学报, 2009, 22(11): 1665-1669.
[8] CHEN Z M, FAN M B, CAO B H, et al.Characterization of image sequences of a defect using pulsed eddy current signals[J]. Journal of Magnetism and Magnetic Materials, 2021, 534: 168007.
[9] YU Y, YAN Y, WANG F, et al.An approach to reduce lift-off noise in pulsed eddy current nondestructive technology[J]. NDT & E International, 2014, 63: 1-6.
[10] 严俨, 刘怡, 朱俊臻, 等. 基于电涡流脉冲热成像偏度特征的钢轨自然裂纹量化评估[J]. 机械工程学报,2021, 57(18): 75-85.
[11] 季舒安, 金卫良, 金英, 等. 基于电涡流效应的钢质体应变实时检测技术研究[J]. 中国安全生产科学技术, 2023, 19(2): 224-230.
[12] LYU F Y, WANG L L, FENG Y, et al.Thermal behavior and microstructure evolution mechanism of Ti6Al4V 80 mm thick plates jointed by laser melting deposition[J]. Journal of Manufacturing Processes, 2021, 71: 12-26.
[13] BI Z, LI Y, QIAN B.Defect formation mechanisms in selective laser melting:a review[J]. Chinese Journal of Mechanical Engineering, 2017, 30(3):515-527.
[14] 陈望飞. 基于涡流检测的金属厚度和电导率测量技术研究[D]. 兰州:兰州大学, 2022.
[15] 王龙群, 张璧, 彭颖, 等. 增减材复合制造内部缺陷的涡流检测[J]. 航空学报, 2020, 41(3): 287-295.
[16] DIRAISON Y L, JOUBERT P Y, PLACKO D.Characterization of subsurface defects in aeronautical riveted lap-joints using multi-frequency eddy current imaging[J]. NDT & E International, 2009, 42(2): 133-140.
[17] DU W, BAI Q, WANG Y B, et al.Eddy current detection of subsurface defects for additive/subtractive hybrid manufacturing[J]. International Journal of Advanced Manufacturing Technology, 2017, 95: 3185-3195.
[18] SONI A K, SASI B, THIRUNAVUKKARASU S, et al.Development of eddy current probe for detection of deep sub-surface defects[J]. IETE Technical Review, 2016, 33(4): 386-395.
[19] GUO S, REN G H, ZHANG B.Subsurface defect evaluation of selective-laser-melted Inconel 738LC alloy using eddy current testing for additive/subtractive hybrid manufacturing[J]. Chinese Journal of Mechanical Engineering, 2021, 34: 111.
[20] 张玉宝, 胡树丞. 基于ANSYS有限元方法的低频涡流检测仿真[J]. 传感器与微系统, 2020, 39(3): 46-49.
[21] BENTO J B, LOPEZ A, PIRES I, et al.Non-destructive testing for wire + arc additive manufacturing of aluminium parts[J]. Additive Manufacturing, 2019, 29: 100782.
[1] ZHANG Hai-chao, LIU Jun-jie. Application of Grinding Process in the Post-treatment Stage of Titanium Alloy Castings [J]. VACUUM, 2024, 61(4): 92-95.
[2] XU Hai-long, FU Bao-quan. Research on Vacuum Preparation and Corrosion Resistance of Titanium Alloys with High Mo Content [J]. VACUUM, 2023, 60(6): 53-60.
[3] LIN Song-sheng, LIU Ruo-yu, TIAN Tian, LÜ Liang, SU Yi-fan, WANG Yun-cheng, SHI Qian, YUN Hai-tao, TANG Peng, ZHENG Cai-feng, YI Chu-shan. Effect of Thickness on Structure and Properties of Cr-CrN-Cr-CrAlN Multilayers [J]. VACUUM, 2023, 60(4): 1-7.
[4] SONG Jing-si, ZHANG Qiang, ZUO Ye, CHEN Jiu-qiang, LI Xiu-zhang, LI Hong-lei, ZHANG Zhe-kui. New Continuous Vacuum Cold Crucible Induction Skull Furnace [J]. VACUUM, 2023, 60(2): 73-77.
[5] FENG Jun-xiao, ZUO Ye, WANG Yong, ZHANG Zeng-hai, TENG Long, SHEN Zi-wei, JIN He, SONG Jing-si, ZHANG Zhe-kui. Research, Development Prospect of Vacuum Atomization Powdering Technology [J]. VACUUM, 2022, 59(6): 87-92.
[6] LI Zhuo-hui, LU Tong-shan, LIU Jia-lin, SUN Song-gang, DONG Dong, SHI Cheng-tian, LI Can-lun, ZHANG Rui. Approximate Calculation Method of Decompression Time in Rapid Decompression Environment Simulation System [J]. VACUUM, 2022, 59(3): 25-28.
[7] CHEN Qu-ping, LIN Song-sheng, LIU Ling-yun, GUO Chao-qian, SHI Qian, WANG Yun-cheng, LÜ Liang, LIU Ruo-yu, YI Chu-shan. Effect of Modulation Structure on Properties of Cr-CrN-Cr-CrAlN Multilayer Films [J]. VACUUM, 2022, 59(3): 29-34.
[8] WU Fan, LIN Bo-chao, QUAN Yin-zhu, , CHEN Wei, YANG Yang. Review on Equipment and Application of Electron-beam Based Additive Manufacturing [J]. VACUUM, 2022, 59(1): 79-85.
[9] WANG Yang, ZHANG Gao-hui, WANG Kai, YANG Rong-fei, LI Xiang, SUN Qi-xuan. Laser Ablative Characterization of Fire Resistance for the Titanium Alloy Ti6Al4V Surface by Ion Implanted Copper [J]. VACUUM, 2021, 58(5): 98-103.
[10] MA Yi-Gang, LI Zhi-hui. Application of Ultra-high and High Vacuum Technology [J]. VACUUM, 2021, 58(4): 98-102.
[11] WANG Zi-lu, HAO Meng-yi, LI Zhen-xi, LI Jian-jun, HOU Jing-yue. Risk Identification and Precaution of Vacuum Consumable Melting for Titanium Alloys [J]. VACUUM, 2021, 58(3): 71-76.
[12] XU Hai-ying, WANG Zhuang, SANG Xing-hua, YANG Bo, PENG Yong. Development of the Gas Discharger EB Gun of Electron Beam Coaxial Wire [J]. VACUUM, 2021, 58(2): 76-81.
[13] KONG Yuan, ZHANG Hai-ou, GAO Jian-cheng, CHEN Xi, WANG Gui-lan. Numerical Simulation of Multi-Scale Double Time Steps Multi-Physical Fields During Laser Metal Melting Deposition Process [J]. VACUUM, 2020, 57(4): 77-84.
[14] ZHAO Ji-bin, LI Lun, ZHOU Bo, TIAN Tong-tong. Direction-parallel Filling Trajectory Generation Method for Sliced Profile in Additive Manufacturing [J]. VACUUM, 2020, 57(3): 89-93.
[15] LI Lun, ZHAO Ji-bin, ZHOU Bo, TIAN Tong-tong. Slicing Algorithm for Additional Manufacturing Based on Corner Table Data Structure [J]. VACUUM, 2020, 57(3): 84-88.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LI De-tian, CHENG Yong-jun, ZHANG Hu-zhong, SUN Wen-jun, WANG Yong-jun, SUN Jian, LI Gang, . Preparations and applications of carbon nanotube field emitters[J]. VACUUM, 2018, 55(5): 1 -9 .
[2] ZHOU Bin-bin, ZHANG jian, HE Jian-feng, DONG Chang-kun. Carbon nanotube field emission cathode based on direct growth technique[J]. VACUUM, 2018, 55(5): 10 -14 .
[3] CHAI Xiao-tong, WANG Liang, WANG Yong-qing, LIU Ming-kun, LIU Xing-zhou, GAN Shu-yi. Operating parameter data acquisition system for single vacuum pump based on STM32F103 microcomputer[J]. VACUUM, 2018, 55(5): 15 -18 .
[4] LI Min-jiu, XIONG Tao, JIANG Ya-lan, HE Yan-bin, CHEN Qing-chuan. 20kV high voltage based on double transistor forward converter pulse power supply for metal deburring[J]. VACUUM, 2018, 55(5): 19 -24 .
[5] LIU Yan-wen, MENG Xian-zhan, TIAN Hong, LI Fen, SHI Wen-qi, ZHU Hong, GU Bing. Test of ultra high vacuum in space traveling-wave tube[J]. VACUUM, 2018, 55(5): 25 -28 .
[6] XU Fa-jian, WANG Hai-lei, ZHAO Cai-xia, HUANG Zhi-ting. Application of chemical gases vacuum-compression recovery system in environmental engineering[J]. VACUUM, 2018, 55(5): 29 -33 .
[7] XIE Yuan-hua, HAN Jin, ZHANG Zhi-jun, XU Cheng-hai. Discussion on present situation and development trend of vacuum conveying[J]. VACUUM, 2018, 55(5): 34 -37 .
[8] SUN Li-zhi, YAN Rong-xin, LI Tian-ye, JIA Rui-jin, LI Zheng, SUN Li-chen, WANG Yong, WANG Jian, . Research on distributing law of Xenon in big accumulation chamber[J]. VACUUM, 2018, 55(5): 38 -41 .
[9] HUANG Si, WANG Xue-qian, MO Yu-shi, ZHANG Zhan-fa, YING Bing. Experimental study on similarity law of liquid ring compressor performances[J]. VACUUM, 2018, 55(5): 42 -45 .
[10] CHANG Zhen-dong, MU Ren-de, HE Li-min, HUANG Guang-hong, LI Jian-ping. Reflectance spectroscopy study on TBCs prepared by EB-PVD[J]. VACUUM, 2018, 55(5): 46 -50 .