欢迎访问沈阳真空杂志社 Email Alert    RSS服务

VACUUM ›› 2025, Vol. 62 ›› Issue (6): 100-105.doi: 10.13385/j.cnki.vacuum.2025.06.13

• Vacuum Metallurgy and Thermal Engineering • Previous Articles     Next Articles

Simulation and Experimental Validation of the Uniform Temperature Zone in a Vacuum Heat Treatment Furnace for Special Materials

JIA Shouya1, WU Long1, CHE Enlin2, SU Ning2   

  1. 1. China Nuclear Power Engineering Co., Ltd., Zhengzhou 450052, China;
    2. Shenyang Vacuum Technology Institute Co., Ltd., Shenyang 110042, China
  • Received:2025-01-10 Online:2025-11-25 Published:2025-11-27

Abstract: To address the demanding requirement for precise temperature uniformity in specialized heat treatment processes for large-sized special materials in the nuclear industry, a dedicated vacuum heat treatment furnace was first developed and designed. Subsequently, the large uniform temperature zone for processing two types of products was simulated. Through iterative optimization based on simulation results, the power distribution of heaters and the configuration of radiation shields were refined. Finally, the on-site experiments were conducted to validate the distribution range of the uniform temperature zone during the holding phase. The results demonstrated that the as-developed vacuum heat treatment furnace achieved a temperature uniformity of ±3.0 ℃ within a 500 mm×500 mm×3 000 mm uniform temperature zone under operating conditions. Experimental validation showed high consistency with simulation results, confirming that the furnace can meet the design requirements for specialized heat treatment processes of large-sized nuclear materials.

Key words: vacuum heat treatment furnace, uniform temperature zone, simulation analysis, validation

CLC Number:  TG166.1

[1] 张万福,李强,李军,等. 特种合金生产过程中VIDP炉真空系统分析及优化应用[J]. 真空, 2024, 61(1):58-63.
[2] 董国平. 金属材料热处理技术的应用及其发展趋势[J]. 河南科技, 2024, 889(8):86-89.
[3] 钱波,王世宇. 热处理设备的技术进展和研究方向展望[J]. 山西冶金, 2024, 47(10):71-75.
[4] 谢麒麟,郑建聪,孙盼文. 热处理对锆合金管在纯水环境下腐蚀性能的影响[J]. 钢管, 2024,53(3):13-18.
[5] MENG W, WANG X, ZHU H, et al.Effect of vacuum heat treatment temperature on anti-corrosion and conductivity properties of C/TiC nanocomposite coated titanium foil for PEMFC bipolar plates[J]. Fuel, 2025, 384:133676.
[6] 章勋亮,张聪惠,朱文光. 热处理工艺参数对双相Zr-2.5Nb合金组织演变机制及力学性能的影响[J]. 稀有金属材料与工程, 2024, 53(9):2571-2579.
[7] CHANG W, WEI Z, YUN S L, et al.Achieving high strength and ductility in Ti-6.8Mo-3.9Al-2.8Cr-2Nb-1.2V-1Zr-1Sn alloy by rapid optimizing microstructure through gradient heat treatment[J]. Journal of Central South University, 2023, 30(2):387-399.
[8] WANG X W, LONG Z Y, ZHOU K, et al.Study on the temperature uniformity of workpieces inside an annealing furnace[J]. International Journal of Thermal Sciences, 2025, 212:109798.
[9] Li P N, LIANG X Y, TAN Z, et al.Influence of vacuum annealing temperature on damping performance of NiCrAlY composite coatings[J]. Thin Solid Films, 2024, 798:140393.
[10] 周军勇,俞能君,金向阳,等. 基于ANSYS的真空热处理炉的温度场分析[J]. 热加工工艺, 2024, 53(8):31-37.
[11] 李安华,王永卿,苗俊芳. 真空热处理炉恒温区均匀性的测定[J]. 装备制造技术, 2012, (7):136-138.
[12] 张连德,刘静,李家栋,等. 真空热处理炉布料矩阵优化仿真分析[J]. 轧钢, 2022, 39(01):62-67.
[13] 张继光. 真空退火炉炉内温控结构设计及热场仿真[D]. 西安:西安电子科技大学, 2013.
[14] 李鑫. 大型真空退火炉温度及均温性控制研究[D]. 西安:西安石油大学, 2011.
[15] 吴海龙. 电磁搅拌技术在连铸中的应用[J].连铸, 2024(5):2-9.
[16] 王明伟,张立文,江国栋,等. 真空热处理炉温度场的有限元数值模拟[J]. 机械科学与技术, 2005, 24(6):748-750.
[17] 刘静. 低压真空渗碳炉加热过程模拟及工艺优化研究[D]. 沈阳:东北大学,2017.
[18] 张继光. 真空退火炉炉内温控结构设计及热场仿真[D].西安:西安电子科技大学,2013.
[19] 李贺鹏. 热处理炉炉温均匀性感知和系统精度控制方法研究[J]. 数字通信世界, 2024(10):19-21.
[20] 曹巍. 炉温均匀性影响因素的研究及改进[D].南京:南京师范大学,2015.
[21] SABER D, ALMALKI M H, ELAZIZ A K.Design and building of an automated heat-treatment system for industrial applications[J]. Alexandria Engineering Journal, 2020, 59(6):5007-5017.
[22] STALBAUM T, BOYD D, WEIL M, et al.200 kV x-ray source for radiotherapy and imaging: preliminary results and discussion[C]//Medical Imaging 2020: Physics of Medical Imaging. SPIE, 2020, 11312: 881-887.
[23] 程建,陈鼎,莫凡,等. 真空热处理设备PLC温控系统设计[J]. 真空, 2017, 54(6):55-57.
[24] 刘一鸥. 真空热处理炉PLC温控系统的设计研究[J]. 工业加热, 2025, 54(2):16-19.
[25] 高程程. 基于粒子群模糊PID的真空退火炉温控系统研究[D]. 大连:大连海洋大学, 2023.
[26] 凡占稳,单琼飞,尹承锟,等. 基于单神经元PID的真空炉自适应温度控制[J]. 金属热处理, 2020, 45(12):237-241.
[27] 张伟,王松沛. 真空热处理设备PLC温控系统设计[J]. 冶金与材料, 2019, 39(3):97-98.
[28] 邢星,罗建岩,贾志淳,等. 智能真空热处理炉远程监控系统设计与实现[J]. 计算机技术与发展, 2020, 30(6):151-155.
[1] CHEN Bolong, LI Zhongren, WANG Ying, WU Yifei, SU Ning, SONG Jiaxing, CHE Enlin, LIU Jun. Study on Temperature Uniformity of Heat Treatment System for Large Superconducting Coils [J]. VACUUM, 2025, 62(3): 33-37.
[2] ZHANG Hong-xing, SUI Xiao-xiang, WANG Hai-jun, LIU Zhong-hua, CHEN Huai-dong, ZHANG Hai-feng. Numerical Simulation Study of Leakage Flow Field on the Wall Surface of Condenser Pipe [J]. VACUUM, 2023, 60(6): 15-21.
[3] QI Song-song, NI Jun, LI Zhuo-hui, SHI Cheng-tian, FENG Lei, CHEN Hong-bin, LI Can-lun. Research on Gate Design and Optimization of Super Large Vacuum Vessel [J]. VACUUM, 2023, 60(5): 81-85.
[4] WANG Gui-peng, HUANG Yu-xing, QU Shao-fen, GAO Guang-wei, XIE Yuan-hua, LIU Kun, BA De-chun. Study on Influence of the Change of Inlet and Outlet Angle of Impeller Blade of Vacuum Heat Treatment Furnace on Cooling Efficiency [J]. VACUUM, 2022, 59(5): 63-68.
[5] MA Qiang, SUN Zu-lai, ZHANG Zhe-kui, MU Xin, LI Jian-jun, WANG Qiu-bo. Vibration Simulation Analysis of Ingot Withdrawing Mechanism of Large Power Vacuum Cold Hearth Furnace [J]. VACUUM, 2021, 58(5): 104-109.
[6] QI Song-song, XU Xiao-hui, LIU Jia-lin, ZHANG Rui, LI Can-lun, DONG De-sheng, SHI Cheng-tian. Design and Analysis of Temperature Control Heat Sink for Thermal Vacuum Test Equipment [J]. VACUUM, 2020, 57(2): 62-65.
[7] RUAN Qing-dong, PU Shi-hao, CHEN Chang, WEI Yu-ping. Development of acceleration power supply for a new type high energy ion implantation system [J]. VACUUM, 2018, 55(6): 14-18.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LI De-tian, CHENG Yong-jun, ZHANG Hu-zhong, SUN Wen-jun, WANG Yong-jun, SUN Jian, LI Gang, . Preparations and applications of carbon nanotube field emitters[J]. VACUUM, 2018, 55(5): 1 -9 .
[2] ZHOU Bin-bin, ZHANG jian, HE Jian-feng, DONG Chang-kun. Carbon nanotube field emission cathode based on direct growth technique[J]. VACUUM, 2018, 55(5): 10 -14 .
[3] CHAI Xiao-tong, WANG Liang, WANG Yong-qing, LIU Ming-kun, LIU Xing-zhou, GAN Shu-yi. Operating parameter data acquisition system for single vacuum pump based on STM32F103 microcomputer[J]. VACUUM, 2018, 55(5): 15 -18 .
[4] LI Min-jiu, XIONG Tao, JIANG Ya-lan, HE Yan-bin, CHEN Qing-chuan. 20kV high voltage based on double transistor forward converter pulse power supply for metal deburring[J]. VACUUM, 2018, 55(5): 19 -24 .
[5] LIU Yan-wen, MENG Xian-zhan, TIAN Hong, LI Fen, SHI Wen-qi, ZHU Hong, GU Bing. Test of ultra high vacuum in space traveling-wave tube[J]. VACUUM, 2018, 55(5): 25 -28 .
[6] XU Fa-jian, WANG Hai-lei, ZHAO Cai-xia, HUANG Zhi-ting. Application of chemical gases vacuum-compression recovery system in environmental engineering[J]. VACUUM, 2018, 55(5): 29 -33 .
[7] XIE Yuan-hua, HAN Jin, ZHANG Zhi-jun, XU Cheng-hai. Discussion on present situation and development trend of vacuum conveying[J]. VACUUM, 2018, 55(5): 34 -37 .
[8] SUN Li-zhi, YAN Rong-xin, LI Tian-ye, JIA Rui-jin, LI Zheng, SUN Li-chen, WANG Yong, WANG Jian, . Research on distributing law of Xenon in big accumulation chamber[J]. VACUUM, 2018, 55(5): 38 -41 .
[9] HUANG Si, WANG Xue-qian, MO Yu-shi, ZHANG Zhan-fa, YING Bing. Experimental study on similarity law of liquid ring compressor performances[J]. VACUUM, 2018, 55(5): 42 -45 .
[10] CHANG Zhen-dong, MU Ren-de, HE Li-min, HUANG Guang-hong, LI Jian-ping. Reflectance spectroscopy study on TBCs prepared by EB-PVD[J]. VACUUM, 2018, 55(5): 46 -50 .