欢迎访问沈阳真空杂志社 Email Alert    RSS服务

VACUUM ›› 2025, Vol. 62 ›› Issue (6): 62-69.doi: 10.13385/j.cnki.vacuum.2025.06.09

• Measurement and Control • Previous Articles     Next Articles

Fault Diagnosis Method for Electric Vacuum Pump Assisted Braking System of New Energy Vehicles

WANG Jixin, HU Chenqi   

  1. Shanghai Vocational and Technical College of Communications, Shanghai 200431, China
  • Received:2025-05-13 Online:2025-11-25 Published:2025-11-27

Abstract: Under dynamic working conditions, the transient signal of the electric vacuum pump assisted braking system of new energy vehicles has multi-modal nonlinear coupling characteristics, which can easily lead to misjudgement of fault modes. Therefore, this study proposes a new fault diagnosis method. Firstly, by real-time monitoring of core parameters such as the maximum vacuum degree and pumping rate during the operation of the vacuum pump, a dynamic characteristic model of the electric vacuum pump assisted braking system is constructed. Secondly, starting from the aspects of current and pressure, the transient characteristics of the electric vacuum pump assisted braking system are obtained, and continuous transient signals of the system operation are generated; Then, to address the multi-modal nonlinear coupling characteristics of the signal, the transient signal is decomposed using wavelet analysis theory, and the energy entropy features of each frequency band signal are extracted. By finely characterizing the inherent nature of the fault features, the identification and discrimination of the fault features are improved, and a vacuum failure feature library is established; Finally, an intelligent fault diagnosis model is constructed by combining ResCNN network and XGBoost. Energy entropy features are input into the model, and deep level representative features are further explored through convolutional pooling operation. Then, relying on the automatic classification ability of XGBoost, the deep level features are efficiently and accurately classified to output the fault diagnosis results of the braking system. The results show that the ACC value of this method reaches 0.97, which realizes the accurate description of the running state of the braking system, effectively shortens the vacuum establishment time, and reduces the pressure fluctuation and energy consumption of the system.

Key words: electric vacuum pump braking system, vacuum dynamics, deep learning, vacuum failure, fault diagnosis

CLC Number:  TB752;TP391.5

[1] ROTH A.Vacuum technology in automotive applications[J]. Vacuum, 2021, 89(3): 45-58.
[2] 刘双源,吴科瑞.电动车电机驱动传感系统集成故障诊断策略[J].机械设计与制造,2024,400(6):223-228.
[3] 张兴琦,宋杰,宋雪梅,等.基于AMESIM的电动真空泵优化匹配研究[J].南京理工大学学报,2023,47(3):397-403.
[4] 黄庆程. 基于IPSO-SVM的动态汽车衡故障诊断方法研究[J].机电工程,2024,41(12):2310-2319.
[5] 徐猛,袁细祥,石计红,等.真空泵系统引致车内结构噪声快速识别与控制[J].噪声与振动控制,2022,42(4):256-261.
[6] 洪吉超,张昕阳,徐晓明,等.基于多熵融合的动力电池故障诊断与应用研究[J].机械工程学报,2024,60(12):301-312.
[7] 孙环阳,张红光,薛明晨,等.基于小波包分解与BP神经网络的制动系统电磁阀故障诊断研究[J].铁道机车车辆,2024,44(5):39-45.
[8] 陈岩霖,孙庚,汪敏捷,等.基于MSIF-CNN的地铁车辆制动系统故障诊断方法[J].现代电子技术,2024,47(24):137-142.
[9] 钟志成,徐封杰,李超超,等.基于动态故障树的汽车系统故障诊断方法[J].电子测量技术,2023,46(14):131-137.
[10] ZHOU C, YU N, CAI G, et al.Comparison between the dynamic characteristics of electric pump fed engine and expander cycle engine[J]. Aerospace Science and Technology. 2022, 124: 107508.
[11] 范永山,杜畅通,张化一,等.Xi PAF重离子同步加速器超高真空系统设计[J].工程科学与技术,2025,57(1):339-346.
[12] 杜伟,张少伟,辛庆锋,等.电动汽车真空泵结构与性能分析[J].机械制造,2024,62(1):29-30.
[13] 闵济东,李京,胡文盛,等.基于喷射器的一回路抽真空系统研究[J].核动力工程,2023,44(S2):221-225.
[14] 李正清,韩仙虎,蔡宇宏,等.一种腰部为椭圆线的罗茨真空泵转子型线设计与分析[J].真空, 2024, 61(1):47-51.
[15] 杨乃恒. 关于真空除气使用的真空泵情况分析与讨论[J].真空,2021,58(1):29-32.
[16] BARRAU A, BONNABEL S.The invariant extended kalman filter as a stable observer[J]. IEEE Transactions on Automatic Control. 2017, 62(4): 1797-1812.
[17] 张丕显,张以忱,战春鸣,等.干式真空泵在半导体及新能源领域的应用及发展趋势[J].真空,2024,61(3):1-8.
[18] 赵前玉,于振华,李恒霖,等.基于MATLAB/GUI的真空泵抽速曲线预测计算[J].真空,2024,61(3):9-12.
[19] 郑宝山. 液环真空泵抽气量修正探讨及工程应用优化[J].化工设备与管道,2021,58(5):38-42.
[20] 侯聪闻,柳恩芬,张世强,等.电子真空助力器控制系统及方法[J].吉林大学学报(信息科学版),2022,40(1):13-19.
[21] 何天一,岳向吉,张志军,等.等螺距螺杆真空泵内气体流动的数值模拟研究[J].真空,2024,61(1):52-57.
[22] 李小金,李正清,韩仙虎,等.基于TRIZ理论的一种提升罗茨真空泵基础压力的设计方法[J].真空, 2024, 61(2):62-67.
[23] 田兴丽,孙环阳,张红光,等.城市轨道交通车辆制动系统的智能诊断与预警系统[J].城市轨道交通研究,2023,26(11):94-98.
[24] 郭媛,汪胜,李世超,等.基于高斯模糊和BP神经网络的汽车液压转向系统故障诊断[J].液压与气动,2023,47(10):70-77.
[25] 何宇新,廖长江,何新旭.基于多尺度信息熵特征的数据流快速聚类研究[J].电子设计工程,2024,32(15):41-44.
[1] ZHOU Jianguang. Intelligent Diagnosis Method for Multimodal Operating Conditions of On-load Tap Changer Based on Vacuum Arc Extinguishing Characteristics [J]. VACUUM, 2025, 62(6): 80-87.
[2] QU Qilong, DAI Cheng, ZHANG Zhijun, AI Shiyi. Research on Fault Diagnosis Method of Helium Leak Detection Equipment Based on Gray Scale Images of Time Series Data [J]. VACUUM, 2025, 62(6): 70-79.
[3] QU Qilong, DUAN Yao, ZHANG Zhijun, AI Shiyi. Fault Diagnosis of Helium Leak Detection Equipment Based on CNN-RNN [J]. VACUUM, 2025, 62(5): 23-31.
[4] NI Jun, GUO Teng, LI Canlun, HOU Kailin, LI Rongyi. The Surface Defect Detection Method of Vacuum Coating Production Based on Deep Learning [J]. VACUUM, 2025, 62(4): 69-74.
[5] LIU Meng, WU Jian-long, ZHAO Teng, ZHU Lang-tao, CAO Hai-ling, ZHANG Ming, MA Zheng-feng, ZHANG Mi, FU Deng-feng. Research and Application of Remote Fault Diagnosis System for Mechanical Vacuum Pump [J]. VACUUM, 2021, 58(2): 48-51.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LI De-tian, CHENG Yong-jun, ZHANG Hu-zhong, SUN Wen-jun, WANG Yong-jun, SUN Jian, LI Gang, . Preparations and applications of carbon nanotube field emitters[J]. VACUUM, 2018, 55(5): 1 -9 .
[2] ZHOU Bin-bin, ZHANG jian, HE Jian-feng, DONG Chang-kun. Carbon nanotube field emission cathode based on direct growth technique[J]. VACUUM, 2018, 55(5): 10 -14 .
[3] CHAI Xiao-tong, WANG Liang, WANG Yong-qing, LIU Ming-kun, LIU Xing-zhou, GAN Shu-yi. Operating parameter data acquisition system for single vacuum pump based on STM32F103 microcomputer[J]. VACUUM, 2018, 55(5): 15 -18 .
[4] LI Min-jiu, XIONG Tao, JIANG Ya-lan, HE Yan-bin, CHEN Qing-chuan. 20kV high voltage based on double transistor forward converter pulse power supply for metal deburring[J]. VACUUM, 2018, 55(5): 19 -24 .
[5] LIU Yan-wen, MENG Xian-zhan, TIAN Hong, LI Fen, SHI Wen-qi, ZHU Hong, GU Bing. Test of ultra high vacuum in space traveling-wave tube[J]. VACUUM, 2018, 55(5): 25 -28 .
[6] XU Fa-jian, WANG Hai-lei, ZHAO Cai-xia, HUANG Zhi-ting. Application of chemical gases vacuum-compression recovery system in environmental engineering[J]. VACUUM, 2018, 55(5): 29 -33 .
[7] XIE Yuan-hua, HAN Jin, ZHANG Zhi-jun, XU Cheng-hai. Discussion on present situation and development trend of vacuum conveying[J]. VACUUM, 2018, 55(5): 34 -37 .
[8] SUN Li-zhi, YAN Rong-xin, LI Tian-ye, JIA Rui-jin, LI Zheng, SUN Li-chen, WANG Yong, WANG Jian, . Research on distributing law of Xenon in big accumulation chamber[J]. VACUUM, 2018, 55(5): 38 -41 .
[9] HUANG Si, WANG Xue-qian, MO Yu-shi, ZHANG Zhan-fa, YING Bing. Experimental study on similarity law of liquid ring compressor performances[J]. VACUUM, 2018, 55(5): 42 -45 .
[10] CHANG Zhen-dong, MU Ren-de, HE Li-min, HUANG Guang-hong, LI Jian-ping. Reflectance spectroscopy study on TBCs prepared by EB-PVD[J]. VACUUM, 2018, 55(5): 46 -50 .