VACUUM ›› 2020, Vol. 57 ›› Issue (1): 40-47.doi: 10.13385/j.cnki.vacuum.2020.01.08
Previous Articles Next Articles
YANG Fei, LI Zhen-hai, LI Jian-chang
CLC Number:
[1] Bianchi D, Neri A.Numerical simulation of chemical erosion in VEGA launcher solid-propellant rocket motor nozzles[J]. Journal of Propulsion & Power, 2015, 34(2):1-17. [2] 梁瑜,郭亚林, 张祎. 固体火箭发动机喷管用树脂基烧蚀防热材料研究进展[J]. 宇航材料工艺, 2017, 47(2):1-4. [3] 舒诚. 固体火箭发动机的喷管[J]. 固体火箭技术, 1978,(2):29-55. [4] 郭亚林, 刘毅佳, 李瑞珍, 等. 固体发动机喷管扩张段斜向缠绕成型技术研究进展[J]. 宇航材料工艺, 2014, 44(3):12-15. [5] 季宗徳, 周长省, 丘广申. 火箭弹设计理论[M]. 北京:兵器工业出版社, 1995:219-220. [6] 王天波, 薛谈顺, 周长省, 等. 复合结构喷管温度场及应力场数值模拟[J]. 弹道学报, 2012, 24(2):88-91. [7] 王成轩. 固体发动机喷管内部型面最佳设计[J]. 宇航学报, 1996, 17(3):64-67. [8] Guderley G, Hantsch E.Beste formen fur achsensymmetrische Uberschallschubdusen[J]. Research Gate, 1995, (3):305-315. [9] Rao G.V. R. Exhaust nozzle contour for optimum thrust[J]. Jet propulsion, 1958, (28): 377-382. [10] Allman J G, Hoffman J D.Design of maximum thrust nozzle contours by direct optimization methods[J]. AIAA Journal, 1981, 19(6):750-751. [11] 阮崇智. 比冲损失的分析和实验测定[J]. 固体火箭技术, 1978(2):71-87. [12] Coats D E, Nickerson G R, Dang A L, et al. Solid performance program(SPP)[R/d]. San Diego:AIAA,1987[2012-08-17]. https://doi.org/10.2514/6.1987-1701. [13] 方丁酉. 两相流动力学[M]. 长沙: 国防科技大学出版社, 1988:271-491. [14] 梁国柱, 张中钦, 安联, 等. 近地点变轨发动机高空喷管性能预示研究[J]. 推进技术, 2002, 23(5):415-419. [15] 王晔, 段志信. 基于Matlab和BP神经网络的固体火箭发动机比冲性能的预测[J]. 内蒙古科技与经济, 2007(8):73-74. [16] 希什科夫. 固体火箭发动机气体动力学[M]. 耳玲姗,译. 国防工业出版社, 1979. [17] Taylor A A, Hoffman J D.Design of maximum thrust nozzles for nonequilibrium chemically reacting flow[J]. Aiaa Journal, 2015,12(10):1299-1300. [18] D.K.Davis, 蒋谦逊. 固体火箭发动机喷管型面最佳化技术的研究[J]. 固体火箭技术, 1982(3):18-33. [19] Flamm J, Deere K, Mason M, et al. Design enhancements of the two-dimensional, dual throat fluidic thrust vectoring nozzle concept[A].3rd Aiaa Flow Control Conference[C/OL].2006[2012-06-15]. https://doi.org//10.2514/6.2006-3701. [20] Micbael R V, Goldman L J.Computer program for design of two-dimensional supersonic nozzle with sharp-edged throat[R]. Washington,D.C:NASA. 1968. [21] 王筱蓉, 周长省, 鞠玉涛, 等. 固体火箭发动机特型喷管的型面设计[J]. 弹道学报, 2008, 20(4):77-80. [22] Sivells J C.A computer program for the aerodynamics design of axisymmetric and planar nozzles for supersonic and hypersonic wind tunnels[R]. TN37389:Arnold AFB,1978. [23] 张敏莉, 易仕和, 赵玉新. 超声速短化喷管的设计与实验研究[J]. 空气动力学学报, 2007, 25(4):500-503. [24] Yu K H, Yang X, Mo Z.Profile design and multifidelity optimization of solid rocket motor nozzle[J]. Journal of fluids engineering, 2014, 136(3):031104. [25] 赵一龙, 赵玉新, 王振国, 等. 超声速型面可控喷管设计方法[J]. 国防科技大学学报, 2012, 34(5):1-4. [26] 李宜敏. 固体火箭发动机原理[M]. 北京: 国防工业出版社, 1985:308. [27] 马国宝. 二次抛物线型面喷管参数的优化选择[J]. 固体火箭技术, 1995,(3):8-12. [28] 揭国平, 方丁酉. 喷管型面对固体火箭发动机性能的影响[J]. 推进技术, 1988,9(4):9-15+77. [29] 陈林泉,李岩芳,王建儒, 等. 喷管扩散段型面对固体发动机性能的影响[J]. 固体火箭技术, 2004, 27(1):9-11. [30] Zebbiche T, Youbi Z E, Supersonic two-dimensional minimum length nozzle design at high temperature application for air[J]. Chinese journal of aeronautics, 2007, (20):29-39. [31] Dittakavi N, Chunekar A, Frankel S.Large eddy simulation of turbulent-cavitation interactions in a venturi nozzle[J]. Fluids Engineering, 2010(132): 121301. [32] Deere K A, Flamm J D, Berrier B L, et al.Computational study of an axisymmetric dual throatfluidic fhrust vectoring nozzle concept for supersonic aircraft application[J]. AIAA, 2007:2007-5085. [33] Hussaini M M, Korte J J.Investigation of low-reynolds- number rocket nozzle design using PNS-based optimization procedure[M]. NASA Langley technical report Server, 1996. [34] Vlassov D, Vargas J V C, Ordonez J C. The optimization of rough surface supersonic nozzles[J]. Acta Astronautica, 2007, 61(10):866-872. [35] Lijo V, Kim H D, Setoguchi T, et al.Numerical simulation of transient flows in a rocket propulsion nozzle[J]. International Journal of Heat and Fluid Flow, 2010, 31(3):409-417. [36] Mine Yumu?ak. Analysis and design optimization of solid rocket motors in viscous flows[J]. Computers & Fluids, 2013, 75(75):22-34. [37] Kamran A, Liang G Z.An integrated approach for optimization of solid rocket motor[J]. Aerospace Science and Technology, 2012,17(1):50-64. [38] 陈伟, 梁国柱. 基于CFD的多级推力固体火箭发动机轴对称喷管型面优化与高精度性能预估[J]. 固体火箭技术, 2014, 37(1):30-36. [39] 成沉, 鲍福廷, 刘旸, 等. 基于响应面法的喉栓式喷管型面优化设计[J]. 固体火箭技术, 2014, 37(1):47-51. [40] Wang X, Damodaran M.Optimal three-dimensional nozzle shape design using CFD and parallel simulated annealing[J]. Journal of Propulsion & Power, 2015, 18(1):217-221. [41] 施小娟, 吉洪湖. 基于代理模型的二元收扩喷管流道型面优化设计[J]. 航空动力学报, 2016, 31(9):2124-2131. [42] 李娜. 基于CBS有限元的流固耦合计算方法研究[D]. 南京: 南京航空航天大学, 2006. [43] 董非,范秦寅,姜树李,等. 内燃机流-固-热耦合数值模拟的研究[J]. 汽车工程, 2009, 31(2): 146-150. [44] T. Elperin, A. Fominykh.Mass and heat transfer during solid sphere dissolution in a non-uniform fluid flow[J]. Heat Mass Transfer, 2005, 41:442-448. [45] 卢晓杨, 陆志良. 高超音速流场与结构温度场耦合计算[J]. 江苏航空, 2008,(S1): 57-61. [46] Michiel N, Anthony G D.Comparison of CFD simulations to experiment for convective heat transfer in a gas-solid fixed bed[J]. Chemical Engineering Journal, 2000, 82(2001): 231-246. [47] 薛赛男, 骆晓臣. 固体火箭发动机喷管中流固热耦合问题及研究进展[J]. 江苏航空, 2010(s1):2-4. [48] 黄喻路, 梁国柱. 固体火箭发动机喷管两相流场与结构温度场一体化数值模拟与软件实现[J]. 计算机辅助工程,2009,18(2):25-28. [49] 李娜,吉洪湖. 基于CBS有限元的流动-传热-变形耦合计算方法[J]. 南京航空航天大学学报,2008(5):56-60. [50] Zienkiewicz O C.Achievement and some unsolved problems of the finite element method[J]. International Journal for Numerical Methods in Engineering, 2000, 47(1): 9-28. [51] Wang J, Wang M, Li Z.A lattice Boltzmann algorithm for fluid-solid conjugate heat transfer[J]. International Journal of Thermal Sciences, 2007, 46(3):228-234. [52] Hwang C J, C hang G C. Numerical study of gas-particle flow in a solid rocket nozzle[J].AIAA Journal, 1988, 26(6):682-689. [53] Chang I S.Three-dimensional, two-phase, transonic, canted nozzle flows[J].AIAA Journal, 1988, 28(5):790-797. [54] 贺朝霞, 魏超, 曹蕾蕾. 喷管形式对固体火箭发动机热安全性的影响[J]. 中国科技论文, 2013, 8(8):796-800. [55] Liu Q, Luke E A, Cinnella P.Coupling Heat Transfer and Fluid Flow Solvers for Multidisciplinary Simulations[J]. Journal of Thermophysics & Heat Transfer, 2015, 19(4):417-427. [56] 黄宏艳, 王强. 轴对称喷管内外流场与结构温度场耦合计算[J]. 推进技术, 2008, 29(2):194-198. [57] 裴少帅, 胡迎春, 高四良. 基于MSC. Marc的固体发动机喷管非线性瞬态热结构耦合分析[J]. 机械, 2018(4):6-10. [58] 姬晓辉, 武晓松, 季宗德. 最佳推力喷管型面设计[J]. 弹箭技术, 1997(3):10-13. [59] 田敏华. 火箭发动机最佳推力喷管型线的计算方法[J]. 工程热物理学报, 1981, 2(3):259-261. [60] 罗俊扬, 孙越. 固体火箭发动机一元两相流动最大推力喷管型面研究[J]. 兵工学报, 1982,3(1):1-9. [61] 谢侃, 刘宇, 任军学,等. 两相流环缝塞式喷管理想型面的设计方法[J]. 固体火箭技术, 2007,30(3):223-228. [62] 方国尧, 王庆. 火箭发动机喷管内型面优化设计[J]. 推进技术, 1993, 14(3):16-21. [63] 刘冰, 方丁酉, 夏智勋, 等. 考虑气体-颗粒两相流效应的火箭发动机喷管参数优化设计[J]. 推进技术, 2013, 34(1):8-14. [64] Ingber L.Simulated annealing:Practice versrs theory[J]. Mathematical and Computer Modelling,1993,18(11):29-57. |
[1] | CHEN Zhi-tao. Development of All-glass Vacuum Heat Collector Coating Equipment [J]. VACUUM, 2020, 57(1): 35-39. |
[2] | DING Sun-an, YANG Hui. Introduction of Nano-X and it's Application Progress [J]. VACUUM, 2019, 56(6): 60-63. |
[3] | LIU Zhao, XING Hong-shuo, SU Jia-hao, ZHANG Jun-shen, LIANG Shuai, XIE Yuan-hua, HAN Jin. Discussion on Present Situation and Development Trend of Vacuum Elevator [J]. VACUUM, 2019, 56(6): 54-59. |
[4] | ZHAI Yun-fei, ZHANG Shi-wei, HAN Feng, ZHAO Fan, XIE Yuan-hua. Thermodynamic calculation for pumping process in the trilobal Roots vacuum pump [J]. VACUUM, 2019, 56(3): 10-15. |
[5] | JIANG Xie-chang. Vacuum system fault diagnosing and troubleshooting [J]. VACUUM, 2019, 56(3): 1-5. |
[6] | SUI Wen, ZHANG Chi, LI Jian-chang. Design of a small-scale vacuum fabrication system specialized for studying organic light-emitting diodes [J]. VACUUM, 2019, 56(3): 6-9. |
[7] | WANG Fei, JING Jia-rong, LI Can-lun, QI Xiao-jun. Development of vacuum thermal environment test system for deep space detector [J]. VACUUM, 2019, 56(3): 16-20. |
[8] | SUN Zhi-ming, HE Chao, ZHANG Ying-li, ZHU Zhi-peng, YUE Xiang-ji, ZHANG Bin, BA De-chun. Design and finite element analysis of large-scale horizontal vacuum container [J]. VACUUM, 2019, 56(2): 26-30. |
[9] | YANG Hua-fei, YIN Shan-shan, LUO Gen-song, LIANG Yi-heng. Research and exploration on energy saving technology of mechanical vacuum pump [J]. VACUUM, 2019, 56(2): 37-40. |
[10] | ZHAO Zhou, ZHANG Anjun. Analysis and research on condensation and icing problems of vacuum multi-layer insulation pipe [J]. VACUUM, 2019, 56(2): 41-44. |
[11] | LIU Xing-sheng, XIE Yong-rong, ZHENG Ying, FEI Wei-nan. A relative method for calibrating vacuum leak and uncertainty assessment [J]. VACUUM, 2019, 56(2): 66-68. |
[12] | Alessandro Abatecola. A new high-conductance ion pump for particle accelerator [J]. VACUUM, 2019, 56(1): 16-19. |
[13] | ZHAO Yue-shuai, SUN Li-chen, SHAO Rong-ping, YAN Rong-xin, SUN Wei, LI Zheng. Design and performance test of DN1250 LN2 refrigerator cooled cryopumps [J]. VACUUM, 2019, 56(1): 1-5. |
[14] | NING Yuan-tao, HUANG Tao, CHEN Qi, ZHANG Yan-shun , QI Xiao-jun. Optimization design of high-speed shafting for molecular pump based on finite-element method [J]. VACUUM, 2019, 56(1): 11-15. |
[15] | WANG Xiao-dong, WU Hong-yue, ZHANG Guang-li, LI He, SUN Hao, DONG Jing-liang, TU Ji-yuan. Computational fluid dynamics approach and its applications in vacuum technology [J]. VACUUM, 2018, 55(6): 45-48. |
|