欢迎访问沈阳真空杂志社 Email Alert    RSS服务

VACUUM ›› 2022, Vol. 59 ›› Issue (5): 38-44.doi: 10.13385/j.cnki.vacuum.2022.05.07

• Thin Film • Previous Articles     Next Articles

Development of High-Efficiency and Energy-Saving Parylene Vacuum Coating Equipment and Its Application in Agriculture

LI Zhi-sheng1, LIU Xiao-jiang2, DUAN Yu-quan3, LIN Qiong3, WANG Xiao-dong4   

  1. 1. Beijing Standfor Technoloyg Co., Ltd., Beijing 102400, China;
    2. School of Mechanical Engineering,Shenyang University of Technology, Shenyang 110870, China;
    3. Institute of Agri-food Science and Technology, Chinese Academy of Agriculture Science, Beijing 100905, China;
    4. School of Mechanical Engineering and Automation, Northeastern University, Shenyang 110819, China
  • Received:2021-11-05 Online:2022-09-25 Published:2022-09-28

Abstract: With the rapid development and wide application of parylene coating technology, how to effectively increase the utilization rate of parylene materials, improve the quality of the film, and reduce costs has been widely concerned in the industrial production process. In this paper, depending on the structural characteristics and application status of conventional parylene vacuum coating equipment, a type of parylene vacuum coating equipment with a built-in pyrolyzer is developed, in which flow characteristics of rare gas, heat transfer and industrial production requirements are concerned. At the same time, according to the unique environmental conditions of the parylene coating room and the characteristics of the film to resist acid and alkali, salt spray and mold, coating protection for flowers and low-moisture dry seeds is proposed, which will expand the application of parylene coating technology in the agricultural field.

Key words: parylene, vapor deposition, built-in pyrolyzer, dry seed

CLC Number: 

  • TH69
[1] GORHAM W F.A new, general synthetic method for the preparation of linear poly-p-xylylenes[J]. Journal of Polymer Science Part A-1: Polymer Chemistry, 1966, 4(12): 3027-3039.
[2] 郑强, 丁有容. 聚对二甲苯的制备、结构、性能及应用[J]. 上海第二工业大学学报, 1984: 125-133.
[3] 顾丽云, 陈曦. 新型高分子材料——聚对二甲苯[J]. 广东塑料, 1993(3): 20-24.
[4] 胡国贞, 陈梦雪, 肖湘竹. 薄膜涂层材料——聚对二甲苯[J]. 成都教育学院学报, 2005, 19(1): 43-44.
[5] 张厚瑛. 聚对二甲苯综述[J]. 化工新材料, 1983(4): 2-5.
[6] 王永刚. Parylene——一种新型机载设备敷型防护涂层材料[J]. 航空精密制造技术, 2003, 38(1): 16-18,33.
[7] 昝丽娜. 聚对二甲苯的制备及其应用研究进展[J]. 化学推进剂与高分子材料, 2008, 6(5): 22-24.
[8] 石红. Parylene真空涂覆新工艺研究[J]. 航空精密制造技术, 2002, 38(1): 19-21.
[9] 张占文, 李波, 王朝阳, 等. 气相沉积法制备聚对二甲苯薄膜[J]. 材料导报, 2003, 17(6): 86-87.
[10] 吴礼群. Parylene敷形涂层[J]. 电子机械工程, 2004, 20(6): 51-53,61.
[11] LAHANN J, KLEE D, HOOKER H.Chemical vapour deposition polymerization of substituted[2.2]paracyclophane[J]. Macromol Rapid Commun, 1998, 19(9): 441-444.
[12] 孙霞容, 浦鸿汀. 聚对苯二甲基膜得化学气相沉积(CVD)聚合[J]. 材料导报, 2004, 18(3): 54-56.
[13] HONG T K, KOO T, PARK C.Parylene-C thin films deposited on polymer substrates using a modified chemical vapor condensation method[J]. Korean Journal of Chemical Engineering, 2010, 27(3): 748-751.
[14] 王晓冬, 巴德纯, 张世伟, 等. 真空技术[M]. 北京: 冶金工业出版社, 2006: 55-62.
[15] 徐成海, 巴德纯, 于溥, 等. 真空工程技术[M]. 北京: 化学工业出版社, 2006: 499-512.
[16] 顾丽云, 陈曦, 洪书宝, 等. 介绍一种保存昆虫标本的新方法[J]. 昆虫知识, 1994(2): 117-118.
[17] 邓志军, 宋松泉, 艾训儒, 等. 植物种子保存和检测的原理与技术[M]. 北京: 科学出版社, 2019: 75-92.
[1] WANG Xin, ZHEN Zhen, MU Ren-de, HE Li-min, XU Zhen-hua. Effect of Deposition Pressure on Phase Structure and High Temperature Oxidation Behavior of Aluminide Coatings [J]. VACUUM, 2022, 59(5): 20-27.
[2] ZHU Wei, LU Qun-xu, QIAN Wei-jin, HUANG Wei-jun, DONG Chang-kun. Study on a Novel Micro-Focus Electron Source for Carbon Nanotubes [J]. VACUUM, 2022, 59(1): 48-53.
[3] YANG Guang, LIU Huan, WANG Ding-ding, LUO Li-ping, LV Xu-ming, QI Yang. Effect of Crack in Micrometer Scale on the Water-cooled Oxygen-free Copper Crucible [J]. VACUUM, 2021, 58(4): 81-86.
[4] ZHOU Bin-bin, ZHANG jian, HE Jian-feng, DONG Chang-kun. Carbon nanotube field emission cathode based on direct growth technique [J]. VACUUM, 2018, 55(5): 10-14.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LI De-tian, CHENG Yong-jun, ZHANG Hu-zhong, SUN Wen-jun, WANG Yong-jun, SUN Jian, LI Gang, . Preparations and applications of carbon nanotube field emitters[J]. VACUUM, 2018, 55(5): 1 -9 .
[2] ZHOU Bin-bin, ZHANG jian, HE Jian-feng, DONG Chang-kun. Carbon nanotube field emission cathode based on direct growth technique[J]. VACUUM, 2018, 55(5): 10 -14 .
[3] LI Zhi-sheng. Development of ultra large shielded door for infrared calibration in simulated space environment[J]. VACUUM, 2018, 55(5): 66 -70 .
[4] ZHENG Lie, LI Hong. Design of 200kV/2mA continuous adjustable DC high voltage generator[J]. VACUUM, 2018, 55(6): 10 -13 .
[5] CHAI Xiao-tong, WANG Liang, WANG Yong-qing, LIU Ming-kun, LIU Xing-zhou, GAN Shu-yi. Operating parameter data acquisition system for single vacuum pump based on STM32F103 microcomputer[J]. VACUUM, 2018, 55(5): 15 -18 .
[6] SUN Li-zhi, YAN Rong-xin, LI Tian-ye, JIA Rui-jin, LI Zheng, SUN Li-chen, WANG Yong, WANG Jian, . Research on distributing law of Xenon in big accumulation chamber[J]. VACUUM, 2018, 55(5): 38 -41 .
[7] HUANG Si, WANG Xue-qian, MO Yu-shi, ZHANG Zhan-fa, YING Bing. Experimental study on similarity law of liquid ring compressor performances[J]. VACUUM, 2018, 55(5): 42 -45 .
[8] JI Ming, SUN Liang, YANG Min-bo. Design of automatic sealing and locking scheme for lunar sample[J]. VACUUM, 2018, 55(6): 24 -27 .
[9] LI Min-jiu, XIONG Tao, JIANG Ya-lan, HE Yan-bin, CHEN Qing-chuan. 20kV high voltage based on double transistor forward converter pulse power supply for metal deburring[J]. VACUUM, 2018, 55(5): 19 -24 .
[10] LIU Yan-wen, MENG Xian-zhan, TIAN Hong, LI Fen, SHI Wen-qi, ZHU Hong, GU Bing. Test of ultra high vacuum in space traveling-wave tube[J]. VACUUM, 2018, 55(5): 25 -28 .