欢迎访问沈阳真空杂志社 Email Alert    RSS服务

VACUUM ›› 2023, Vol. 60 ›› Issue (3): 24-41.doi: 10.13385/j.cnki.vacuum.2023.03.05

• Thin Film • Previous Articles     Next Articles

Comparison of the Analytical Expressions of Three Quantitative Sputtering Depth Profiling Models

ZHONG Feng-min1, WANG Sui-peng1, ZHENG Jin-quan1, YANG Hao1, Siegfried Hofmann1,2, XU Cong-kang1,3, WANG Jiang-yong1,3   

  1. 1. Department of Physics, Shantou University, Shantou 515063, China;
    2. Max Planck Institute for Intelligent Systems, Stuttgart D-70569, Germany;
    3. Center of Semiconductor Materials and Devices, Shantou University, Shantou 515063, China
  • Received:2022-11-06 Online:2023-05-25 Published:2023-05-30

Abstract: In this paper, the analytical expressions of three widely used quantitative depth profiling models, atomic mixing-roughness-information depth(MRI) model, up-and-down slope(UDS) model and roughness-cascade mixing-recoil implantation(RMR)model are systematically discussed. Firstly, the profile characteristics of the three models are analyzed according to definition, formula derivation and simulation analysis. Then, these models are compared in details with the partial depth resolution functions, the depth resolution function, the analytical expressions of analyzed thick film layer and the fitting of experimental data. Finally, the shortcomings of the UDS model are explained, and the incorrect description of the RMR model are corrected. The reliability and superiority of the MRI model are verified by the dynamic characteristics of measured/simulated depth profile.

Key words: quantitative depth profiling, MRI model, UDS model, RMR model, analytical expression, dynamic characteristic

CLC Number:  TB303

[1] LIAN S Y, WANG Z J, WANG C L, et al.Deconvolution method for obtaining directly the original in-depth distribution of composition from measured sputter depth profile[J]. Vacuum, 2019, 166: 196-200.
[2] 康红利, 劳珏斌, 刘毅, 等. SIMS 溅射深度剖析的定量分析[J]. 真空, 2015, 52(2): 44-49.
[3] 康红利, 简玮, 韩逸山, 等. 溅射深度剖析定量分析及其应用研究进展[J]. 汕头大学学报(自然科学版), 2016, 31(2): 3-24.
[4] LIAN S Y, LIN B, YAN X L, et al.Preferential sputtering and mass conservation in AES and SIMS depth profiling[J]. Vacuum, 2019, 160: 109-113.
[5] HOFMANN S, HAN Y S, WANG J Y.Depth resolution and preferential sputtering in depth profiling of sharp interfaces[J]. Applied Surface Science, 2017, 410: 354-362.
[6] HOFMANN S, LIU Y, WANG J Y, et al.Analytical and numerical depth resolution functions in sputter profiling[J]. Applied Surface Science, 2014, 314: 942-955.
[7] DOWSETT M G, BARLOW R D.Characterization of sharp interfaces and delta doped layers in semiconductors using secondary ion mass spectrometry[J]. Analytica Chimica Acta, 1994, 297(1/2): 253-275.
[8] DOWSETT M G, CHU D P.Quantification of secondary-ion-mass spectroscopy depth profiles using maximum entropy deconvolution with a sample independent response function[J]. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena, 1998, 16(1): 377-381.
[9] MOON D W.Summary of ISO/TC 201 standard: XV.ISO 20341: 2003—Surface chemical analysis—secondary ion mass spectrometry—method for estimating depth resolution parameters with multiple delta-layer reference materials[J]. Surface and Interface Analysis, 2005, 37(7): 646-647.
[10] HOFMANN S.Cascade mixing limitations in sputter profiling[J]. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena, 1992, 10(1): 316-322.
[11] HOFMANN S.Atomic mixing, surface roughness and information depth in high-resolution AES depth profiling of a GaAs/AlAs superlattice structure[J]. Surface and Interface Analysis, 1994, 21(9): 673-678.
[12] KUDRIAVTSEV Y A.Restoration of the initial in-depth distribution of an element from a profile measured by SIMS[J]. Journal of Surface Investigation:X-ray, Synchrotron and Neutron Techniques, 2020, 14(1): 92-96.
[13] KUDRIAVTSEV Y, GALLARDO S, VILLEGAS A, et al.Depth-profile analysis of nanostructures by SIMS:depth resolution function[J]. Bulletin of the Russian Academy of Sciences: Physics, 2008, 72(7): 895-898.
[14] KUDRIAVTSEV Y, ASOMOZA R, GALLARDO-HERNANDEZ S, et al.Reconstruction of original indium distribution in InGaAs quantum wells from experimental SIMS depth profiles[J]. Physica B:Condensed Matter, 2014, 453: 53-58.
[15] WUCHER A, KRANTZMAN K D.A statistical approach to delta layer depth profiling[J]. Surface and Interface Analysis, 2012, 44(9): 1243-1248.
[16] 周刚, 吕凯, 刘远鹏, 等.柔性功能薄膜辉光光谱深度分辨率分析[J]. 真空, 2020, 57(4): 1-5.
[17] WANG C L, LI J, LIU X X, et al.Optimization of the two parameters in the deconvolution procedure for obtaining the original in-depth distribution of composition from measured sputter depth profile by genetic algorithm[J]. Vacuum, 2021, 184: 109866.
[18] LIAN S, FOURIE A, WANG J, et al.Effects of sputtering induced artifacts on the determination of diffusion coefficient: application to Ni/Cu system[J]. Vacuum, 2022, 202: 111206.
[19] HOFMANN S.Sputter depth profile analysis of interfaces[J]. Reports on Progress in Physics, 1998, 61(7): 827-888.
[20] KANG H L, LAO J B, LI Z P, et al.Reconstruction of GaAs/AlAs supperlattice multilayer structure by quantification of AES and SIMS sputter depth profiles[J].Applied Surface Science, 2016, 388: 584-588.
[21] 李静, 谭张华, 刘星星, 等.利用遗传算法定量分析 Ni/Cr 多层膜俄歇深度谱[J]. 真空, 2021, 58(4): 6-11.
[22] HOFMANN S, HÖSLER W, VON CRIEGERN R. AES depth profiling of Ta-Si multilayers:dependence of depths resolution on Ar+ ion energy and indicence angle[J]. Vacuum, 1990, 41(7-9): 1790-1791.
[23] HOFMANN S.Advances in sputter depth profiling using AES[J]. Surface and Interface Analysis, 2003, 35(7): 556-563.
[24] HOFMANN S.Characterization of nanolayers by sputter depth profiling[J]. Applied Surface Science, 2005, 241(1/2): 113-121.
[25] HOFMANN S.Auger-and X-ray photoelectron spectroscopy in materials science[M]//Quantitative Compositional Depth Profiling.Springer, 2013: 297-408.
[26] FIORI A, JOMARD F, TERAJI T, et al.Improved depth resolution of secondary ion mass spectrometry profiles in diamond: a quantitative analysis of the delta-doping[J]. Thin Solid Films, 2014, 557: 222-226.
[27] GAUTIER B, PROST R, PRUDON G, et al.Deconvolution of SIMS depth profiles of boron in silicon[J]. Surface and Interface Analysis, 1996, 24(11): 733-745.
[28] GALLARDO S, KUDRIATSEV Y, VILLEGAS A, et al.SIMS characterization of segregation in InAs/GaAs heterostructures[J]. Applied Surface Science, 2008, 255(4): 1341-1344.
[29] LITTMARK U, HOFER W O.Recoil mixing in solids by energetic ion beams[J]. Nuclear Instruments and Methods, 1980, 168(1-3): 329-342.
[30] WITTMAACK K. Detailed evaluation of the analytical resolution function[J]. Applied Surface Science, 2003, 203/204: 268-272.
[31] HOFMANN S.From depth resolution to depth resolution function: refinement of the concept for delta layers, single layers and multilayers[J]. Surface and Interface Analysis, 1999, 27(9): 825-834.
[32] IWASAKI H, NAKAMURA S.On the depth profiles by ESCA[J]. Surface Science, 1976, 57(2): 779-780.
[33] HOFMANN S.Quantitative depth profiling in surface analysis: a review[J]. Surface and Interface Analysis, 1980, 2(4): 148-160.
[34] WITTMAACK K, MUTZKE A.Depth of origin of sputtered atoms:exploring the dependence on relevant target properties to identify the correlation with low-energy ranges[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2012, 281: 37-44.
[35] YANG M H, MOUNT G, MOWAT I.Ultrashallow profiling using secondary ion mass spectrometry: estimating junction depth error using mathematical deconvolution[J]. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena, 2006, 24(1): 428-432.
[36] HOFMANN S, MADER W.Determination of the atomic mixing layer in sputter profiling of Ta/Si multilayers by TEM and AES[J]. Surface and Interface Analysis, 1990, 15(12): 794-796.
[37] 刘毅, 王江涌. 择优溅射对深度剖析谱和深度分辨率的影响[J]. 真空, 2013, 50(1): 15-19.
[38] HOFMANN S, LIAN S Y, HAN Y S, et al.Depth resolution and preferential sputtering in depth profiling of delta layers[J]. Applied Surface Science, 2018, 455: 1045-1056.
[1] MA Ze-qin, LI Hai-ming, ZHUANG Miao-xia, LI Ting-ting, LI Zhen-zhou, JIANG Jie, LIAN Song-you, WANG Jiang-yong, XU Cong-kang. Quantification of High-resolution TOF-SIMS and Pulsed-RF-GDOES Depth Profiles of Mo/Si Nano-multilayers [J]. VACUUM, 2023, 60(1): 17-22.
[2] LI Jing, TAN Zhang-hua, LIU Xing-xing, CHEN Ying-lin, LI Hao-wen, YANG Hao, WANG Chang-lin, WANG Jiang-yong, XU Cong-kang. Quantitative Analysis of AES Depth Profiles for Ni/Cr Multilayered Film by Genetic Algorithms [J]. VACUUM, 2021, 58(4): 6-11.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LI De-tian, CHENG Yong-jun, ZHANG Hu-zhong, SUN Wen-jun, WANG Yong-jun, SUN Jian, LI Gang, . Preparations and applications of carbon nanotube field emitters[J]. VACUUM, 2018, 55(5): 1 -9 .
[2] ZHOU Bin-bin, ZHANG jian, HE Jian-feng, DONG Chang-kun. Carbon nanotube field emission cathode based on direct growth technique[J]. VACUUM, 2018, 55(5): 10 -14 .
[3] CHAI Xiao-tong, WANG Liang, WANG Yong-qing, LIU Ming-kun, LIU Xing-zhou, GAN Shu-yi. Operating parameter data acquisition system for single vacuum pump based on STM32F103 microcomputer[J]. VACUUM, 2018, 55(5): 15 -18 .
[4] LI Min-jiu, XIONG Tao, JIANG Ya-lan, HE Yan-bin, CHEN Qing-chuan. 20kV high voltage based on double transistor forward converter pulse power supply for metal deburring[J]. VACUUM, 2018, 55(5): 19 -24 .
[5] LIU Yan-wen, MENG Xian-zhan, TIAN Hong, LI Fen, SHI Wen-qi, ZHU Hong, GU Bing. Test of ultra high vacuum in space traveling-wave tube[J]. VACUUM, 2018, 55(5): 25 -28 .
[6] XU Fa-jian, WANG Hai-lei, ZHAO Cai-xia, HUANG Zhi-ting. Application of chemical gases vacuum-compression recovery system in environmental engineering[J]. VACUUM, 2018, 55(5): 29 -33 .
[7] XIE Yuan-hua, HAN Jin, ZHANG Zhi-jun, XU Cheng-hai. Discussion on present situation and development trend of vacuum conveying[J]. VACUUM, 2018, 55(5): 34 -37 .
[8] SUN Li-zhi, YAN Rong-xin, LI Tian-ye, JIA Rui-jin, LI Zheng, SUN Li-chen, WANG Yong, WANG Jian, . Research on distributing law of Xenon in big accumulation chamber[J]. VACUUM, 2018, 55(5): 38 -41 .
[9] HUANG Si, WANG Xue-qian, MO Yu-shi, ZHANG Zhan-fa, YING Bing. Experimental study on similarity law of liquid ring compressor performances[J]. VACUUM, 2018, 55(5): 42 -45 .
[10] CHANG Zhen-dong, MU Ren-de, HE Li-min, HUANG Guang-hong, LI Jian-ping. Reflectance spectroscopy study on TBCs prepared by EB-PVD[J]. VACUUM, 2018, 55(5): 46 -50 .