欢迎访问沈阳真空杂志社 Email Alert    RSS服务

VACUUM ›› 2023, Vol. 60 ›› Issue (4): 13-17.doi: 10.13385/j.cnki.vacuum.2023.04.03

• Thin Film • Previous Articles     Next Articles

Influence of Oil Mist Pollution on Sputtering Substrate of Ion Sputtering Instrument

PENG Bo1, YUAN Qiu2, MENG Xiao-min3   

  1. 1. Coating Business Department, Chongqing Anmei Technology Co., Ltd., Chongqing 400707, China;
    2. Chongqing Vocational and Technical University of Mechatronics, Chongqing 402760, China;
    3 Science And Technology R & D Center Chongqing Nobel 2D Materials Research Institute Co., Ltd., Chongqing 400799, China
  • Received:2022-09-15 Online:2023-07-25 Published:2023-07-26

Abstract: The effect of oil mist pollution on micromorphology and element content of sputtered substrate(silicon wafer, weighing paper, copper foil and glass slide) was studied through optical microscope, field emission scanning electron microscope, energy spectrometer and atomic force microscope. The results show that after sputtering deposition for different times, spherical particles appear on the silicon substrate, and the particles gather or grow with the increase of sputtering time. The carbon content of silicon wafer before sputtering is 4.55%, and it rises to about 31.55% after 50s of sputtering deposition. The optical morphology of copper foil and weighing paper after sputtering deposition for 50s has little difference from the sample before sputtering, and there is no spherical particle. The optical morphology of glass slide after sputtering deposition for 50s is similar to that of the silicon slide, spherical particles are randomly distributed on the surface. The silicon substrate is extremely sensitive to oil mist pollution, which is characterized by spherical particles distributed on the surface of the sample after sputtering treatment,and the mass fraction of carbon is about 7-8 times of that before sputtering.

Key words: ion sputter instrument, oil mist molecule, substrate, spherical particles

CLC Number:  TN16;TB321

[1] 马原辉, 陈学广, 刘哲. 扫描电镜粉末样品的制备方法[J]. 实验室科学, 2011, 14(1): 148-150.
[2] 程鹏翥. 离子溅射在物质微观组织结构研究中的应用[J]. 物理, 1984, 13(7): 410-414.
[3] 辛昕. 分析扫描电镜粉末样品的制备方法[J]. 科技展望, 2015(27): 64.
[4] 李剑平. 扫描电子显微镜对样品的要求及样品的制备[J]. 分析测试技术与仪器, 2007, 13(1): 74-77.
[5] 郑东. 扫描电镜非导电样品的等离子溅射镀膜方法[J]. 中国现代教育装备, 2007(10): 19-20.
[6] PRIVAL H G.A model of the ion sputtering process[J]. Surface Science, 1978, 76(2): 443-463.
[7] VACÍK J, HORÁK P, BAKARDJIEVA S, et al. Ion sputtering for preparation of thin MAX and MXene phases[J]. Radiation Effects and Defects in Solids, 2020, 175(1/2): 177-189.
[8] 王醒东, 林中山, 张立永, 等. 扫描电子显微镜的结构及对样品的制备[J]. 广州化工, 2012, 40(19): 28-30.
[9] 焦汇胜, 李香庭. 扫描电镜能谱仪及波谱仪分析技术[M]. 长春: 东北师范大学出版社, 2011.
[10] 余凌竹, 鲁建, 吴永豪, 等. 离子溅射喷金对陶瓷类样品扫描电镜形貌观察的影响[J]. 实验科学与技术, 2020, 18(2): 21-25.
[11] 张世伟. 真空镀膜技术与设备[M]. 北京: 化学工业出版社, 2007.
[12] MOTIHIRO T, OZAWA F, TAGA Y.Ejection angular distribution of argon in sputtering of a gold target[J]. Thin Solid Films, 1985, 128(1/2): 37-39.
[13] HARRIS N S, 鲁浩长. 机械泵的返油(节译)[J]. 真空, 1979(5): 69-75.
[14] 易新建, 徐日炳. 离子溅射Ti、Pt、Au的研究[J]. 华中工学院学报, 1980(4): 232-237.
[15] 李云奇. 真空镀膜[M]. 北京: 化学工业出版社, 2012.
[16] 陈国平. 薄膜物理与技术[M]. 南京: 东南大学出版社, 1993.
[17] PEA-TORRES A, ALI A, STAMATAKIS M, et al.Indirect mechanism of Au adatom diffusion on the Si(100) surface[J]. Physical Review C, 2022, 105(20): 205411.
[18] PALM H, ARBES M, SCHULZ M.Fluctuations of the Au-Si(100) Schottky barrier height[J]. Physical Review Letters, 1993, 71(14): 2224-2227.
[19] AL-SALLAMI W, PARSAEIAN P, DORGHAM A, et al.Oil-soluble ionic liquid to lubricate silicon[J]. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 2021, 235(10): 1995-2006.
[20] STOYANOV P, CHROMIK R R.Scaling effects on materials tribology: from macro to micro scale[J]. Materials, 2017, 10(5): 550.
[1] QIN Li-li, DONG Mao-jin, FENG Yu-dong, HAN Xian-hu, CAI Yu-hong, WANG Yi, LI Xiao-jin, MA Feng-ying. Recent Research Progress of Ultra High Vapor and Oxygen Barrier Film [J]. VACUUM, 2023, 60(1): 23-29.
[2] WAN Shu-hong, LIN Jing, FENG Shuai. Research Progress of Diamond Coated Tools Prepared by Hot Filament CVD [J]. VACUUM, 2022, 59(1): 40-47.
[3] ZHANG Hui, Wang Xiao-bo, ZHANG Wei-xin, GONG Chun-zhi, TIAN Xiu-bo. Effect of Substrate Bias Mode on Structure and Hydrogen Resistance of CrN Thin Films [J]. VACUUM, 2022, 59(1): 18-23.
[4] LI Jian-peng, ZHANG Chi, LI Jian-chang. Latest Studies on Fatigue Failure of Flexible Electronic Devices [J]. VACUUM, 2021, 58(5): 11-15.
[5] XIANG Yu-chun. Effect of Substrate Temperature on the Properties of CuO Films Deposited by Pulse Laser Deposition [J]. VACUUM, 2020, 57(5): 24-27.
[6] WU Hou-pu, TIAN Qin-wen, TIAN Xiu-bo, GONG Chun-zhi. Development and Discharge Behavior of Novel Double Bipolar Pulse High Power Impulse Magnetron Sputtering System [J]. VACUUM, 2019, 56(6): 1-6.
[7] ZHAO Yan-hui, SHI Wen-bo, LIU Zhong-hai, LIU Zhan-qi, YU Bao-hai. Effect of deposition process parameters on arc ion plating [J]. VACUUM, 2018, 55(6): 49-59.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LI De-tian, CHENG Yong-jun, ZHANG Hu-zhong, SUN Wen-jun, WANG Yong-jun, SUN Jian, LI Gang, . Preparations and applications of carbon nanotube field emitters[J]. VACUUM, 2018, 55(5): 1 -9 .
[2] ZHOU Bin-bin, ZHANG jian, HE Jian-feng, DONG Chang-kun. Carbon nanotube field emission cathode based on direct growth technique[J]. VACUUM, 2018, 55(5): 10 -14 .
[3] CHAI Xiao-tong, WANG Liang, WANG Yong-qing, LIU Ming-kun, LIU Xing-zhou, GAN Shu-yi. Operating parameter data acquisition system for single vacuum pump based on STM32F103 microcomputer[J]. VACUUM, 2018, 55(5): 15 -18 .
[4] LI Min-jiu, XIONG Tao, JIANG Ya-lan, HE Yan-bin, CHEN Qing-chuan. 20kV high voltage based on double transistor forward converter pulse power supply for metal deburring[J]. VACUUM, 2018, 55(5): 19 -24 .
[5] LIU Yan-wen, MENG Xian-zhan, TIAN Hong, LI Fen, SHI Wen-qi, ZHU Hong, GU Bing. Test of ultra high vacuum in space traveling-wave tube[J]. VACUUM, 2018, 55(5): 25 -28 .
[6] XU Fa-jian, WANG Hai-lei, ZHAO Cai-xia, HUANG Zhi-ting. Application of chemical gases vacuum-compression recovery system in environmental engineering[J]. VACUUM, 2018, 55(5): 29 -33 .
[7] XIE Yuan-hua, HAN Jin, ZHANG Zhi-jun, XU Cheng-hai. Discussion on present situation and development trend of vacuum conveying[J]. VACUUM, 2018, 55(5): 34 -37 .
[8] SUN Li-zhi, YAN Rong-xin, LI Tian-ye, JIA Rui-jin, LI Zheng, SUN Li-chen, WANG Yong, WANG Jian, . Research on distributing law of Xenon in big accumulation chamber[J]. VACUUM, 2018, 55(5): 38 -41 .
[9] HUANG Si, WANG Xue-qian, MO Yu-shi, ZHANG Zhan-fa, YING Bing. Experimental study on similarity law of liquid ring compressor performances[J]. VACUUM, 2018, 55(5): 42 -45 .
[10] CHANG Zhen-dong, MU Ren-de, HE Li-min, HUANG Guang-hong, LI Jian-ping. Reflectance spectroscopy study on TBCs prepared by EB-PVD[J]. VACUUM, 2018, 55(5): 46 -50 .