欢迎访问沈阳真空杂志社 Email Alert    RSS服务

VACUUM ›› 2024, Vol. 61 ›› Issue (2): 1-9.doi: 10.13385/j.cnki.vacuum.2024.02.01

• Thin Film •     Next Articles

Thermophysical and Thermal Cycling Properties of Multi-element Rare Earth Doped YSZ Thermal Barrier Coatings

HUANG Guang-hong, ZHEN Zhen, WANG Xin, MU Ren-de, HE Li-min, XU Zhen-hua   

  1. Aviation Key Laboratory of Science and Technology on Advanced Corrosion and Protection for Aviation Material, AECC Beijing Institute of Aeronautical Materials, Beijing 100095, China
  • Received:2023-08-11 Online:2024-03-25 Published:2024-03-28

Abstract: The rare earth oxide ceramic designed as 4.5wt.%Gd2O3-5.5wt.%Yb2O3-10.5wt.%Y2O3-79.5wt.%ZrO2 (GdYbYSZ) is a candidate material for thermal barrier coatings (TBCs), which will be suitable for application at higher temperatures. GdYbYSZ ceramic powders and bulks are fabricated by solid-state synthesis at temperatures above 1 300 ℃, and the powders have no phase transformation and exhibit excellent thermal stability despite long-term calcination at 1 100 ℃和1 300 ℃. The averaged thermal diffusivity and thermal conductivity of GdYbYSZ ceramics are approximately 2.1% and 5.1% lower than those of the conventional YSZ bulk respectively. The GdYbYSZ ceramic coatings are directly manufactured on the surface of (Ni, Pt)Al bond coat by means of electron beam physical vapor deposition (EB-PVD), whose phase structure consists primarily of cubic phase with co-existing of excess Y2O3 and ZrO2. Meanwhile, elemental compositions of Y and Zr within as-deposited ceramic topcoats are higher than those in the ingot, and the constituents of Gd and Yb elements in these two types of specimens tend to be similar. A large number of regularly distributed “mud-like” microcracks appear on the surface of GdYbYSZ ceramic coating after the long-term alternating thermal cycling at 1 100 ℃. The transverse microcracks originating in the ceramic topcoat have elongated to the interface of ceramic coating and TGO layer that further cause the degeneration and separation of the interface. The spalling location of the GdYbYSZ ceramic coating mainly occurs at the upper and lower adjacent interfaces of the TGO layer. The serious rumpling, undulation, cross-linking, stress accumulation and rapid relaxation at the convex tip exist in the TGO layer are the critical factors to accelerating interfacial delamination and spallation failure of GdYbYSZ/(Ni, Pt)Al TBCs.

Key words: electron beam physical vapor deposition, thermal barrier coating, thermophysical, thermal cycling, spallation failure

CLC Number:  TB321;TB43

[1] 白明远, 王鑫, 甄真, 等. 稀土锆酸盐热障涂层的相稳定性和界面结合性能研究[J]. 真空, 2021, 58(4): 12-20.
[2] 戴建伟, 牟仁德, 何利民, 等. 热循环条件下NiCrAlYSi/YSZ热障涂层层间损伤及元素扩散行为研究[J]. 真空, 2021, 58(3): 23-29.
[3] 孙健, 刘书彬, 李伟, 等. 电子束物理气相沉积制备热障涂层研究进展[J]. 装备环境工程, 2019, 16(1): 1-6.
[4] LIU Y, ZHEN Z, WANG X, et al.Thermo-physical properties, morphology and thermal shock behavior of EB-PVD thermal barrier coating with DLC YbGdZrO/YSZ system[J]. Materials Today Communications, 2023, 35: 106265.
[5] 常振东, 张婧, 牟仁德, 等. NiCrAlYSi粘结层合金相结构与性能研究[J]. 真空, 2022, 59(4): 41-47.
[6] CAO X Q.Application of rare earths in thermal barrier coating materials[J]. Journal of Materials Science & Technology, 2007, 23: 15-35.
[7] ZHEN Z, WANG X, SHEN Z Y, et al.Phase stability, thermo-physical property and thermal cycling durability of Yb2O3 doped Gd2Zr2O7 novel thermal barrier coatings[J]. Ceramics International, 2022, 48(2): 2585-2594.
[8] DAI J W, HUANG B, HE L M, et al.Thermal cycling behavior and failure mechanism of Yb2O3-doped yttria-stabilized zirconia thermal barrier coatings[J]. Materials Today Communications, 2023, 34: 105409.
[9] ZHEN Z, WANG X, SHEN Z Y, et al.Thermal cycling behavior of EB-PVD rare earth oxides co-doping ZrO2-based thermal barrier coatings[J]. Ceramics International, 2021, 47(16): 23101-23109.
[10] 李嘉, 谢铮, 何箐, 等. Gd2O3-Yb2O3-Y2O3-ZrO2热障涂层材料的热物理性能[J]. 表面技术, 2015(9): 18-22.
[11] 赵鹏森, 曹新鹏, 郑海忠, 等. 稀土掺杂热障涂层的研究进展[J]. 航空材料学报, 2021, 41(4): 83-95.
[12] 王鹏程, 赵运才, 刘明, 等. 稀土氧化物掺杂改性YSZ热障涂层研究现状与趋势[J]. 材料导报, 2021, 35(9): 9069-9076.
[13] 薛召露, 郭洪波, 宫声凯, 等. 新型热障涂层陶瓷隔热层材料[J]. 航空材料学报, 2018, 38(2): 10-20.
[14] WANG X, ZHEN Z, LI N, et al.Electron beam physical vapor deposited YbGYZ thermal barrier coatings: phase stability, thermo-physical properties and thermal shock behavior[J]. Open Ceramics, 2022, 11: 100287.
[15] GUO L, GUO H B, GONG S K, et al.Improvement on the phase stability, mechanical properties and thermal insulation of Y2O3-stabilized ZrO2 by Gd2O3 and Yb2O3 co-doping[J]. Ceramics International, 2013, 39(8): 9009-9015.
[16] SWALIN R A.Thermdynamics of solids[M]. 2ed. New York: John Wiley & Sons, 1972: 53-87.
[17] SCHLICHTING K W, PASTURE N P, KLEMENS P G.Thermal conductivity of dense and porous yttria-stabilized zirconia[J]. Journal of Materials Science, 2001, 36: 3003-3010.
[18] SHEN Z Y, LIU G X, MU R D, et al.Effects of Er stabilization on thermal property and failure behavior of Gd2Zr2O7 thermal barrier coatings[J]. Corrosion Science, 2021, 185: 109418.
[19] 谢敏, 张永和, 周芬, 等. Y2O3掺杂对La2Zr2O7陶瓷结构与热物理性能的影响[J]. 硅酸盐学报, 2016, 44(9): 1352-1356.
[20] 桑玮玮, 张红松, 陈华辉, 等. (Sm0.2Gd0.2Dy0.2Y0.2Yb0.2)3TaO7高熵陶瓷的制备及热物理性能[J]. 无机材料学报,2021, 36(4): 405-410.
[21] ZHANG Y L, GUO L, YANG Y P, et al.Influence of Gd2O3 and Yb2O3 co-doping on phase stability, thermo-physical properties and sintering of 8YSZ[J]. Chinese Journal of Aeronautics, 2012, 25(6): 948-953.
[22] 郭洪波, 宫声凯, 徐惠彬. 新型高温/超高温热障涂层及制备技术研究进展[J]. 航空学报, 2014, 35(10):2722-2732.
[23] MUNAWAR A U, SCHULZ U, CERRI G, et al.Microstructure and cyclic lifetime of Gd and Dy-containing EB-PVD TBCs deposited as single and double-layer on various bond coats[J]. Surface & Coatings Technology, 2014, 245: 92-101.
[24] LIU H, XU M M, LI S, et al.Improving cyclic oxidation resistance of Ni3Al-based single crystal superalloy with low-diffusion platinummodified aluminide coating[J]. Journal of Materials Science & Technology, 2020, 54: 132-143.
[25] MORA-GARCIA A G, RUIZ-LUNA H, ALVARADO-OROZCO J M, et al. Microstructural analysis after furnace cyclic testing of pre-oxidized ReneN5/(Ni,Pt)Al/7YSZ thermal barrier coatings[J]. Surface & Coatings Technology, 2020, 403: 126376.
[26] CAO X Q, VASSEN R, WANG J S, et al.Degradation of zirconia in moisture[J]. Corrosion Science, 2020, 176: 109038.
[27] GELL M, VAIDYANATHAN K, BARBER B, et al.Mechanism of spallation in platinum aluminide/electron beam physical vapour-deposited thermal barrier coatings[J]. Metallurgical and Materials Transactions A,1999, 30: 427-435.
[28] WANG X, ZHEN Z, HUANG G H, et al.Thermal cycling of EB-PVD TBCs based on YSZ ceramic coat and diffusion aluminide bond coat[J]. Journal of Alloys & Compounds, 2021, 873: 159720.
[1] ZHANG Bin, CAI Yan, ZHANG Tao, CHANG Zhen-dong, ZENG Ling-yu, MU Ren-de. Effect of Incident Angle under Deposition on the Morphology and Properties of Thermal Barrier Coatings [J]. VACUUM, 2023, 60(3): 5-11.
[2] DENG Zhong-hua, CHANG Zhen-dong, XU Lei, HU Jiang-wei, CAI Yan, MU Ren-de. Research of Quick Measurement for PVD TBCs Thickness in Industrial Production Using Ball Crater Tester [J]. VACUUM, 2022, 59(6): 73-77.
[3] WANG Li-zhe, CAI Yan, ZHNG Ru-jing, HE Li-min, MU Ren-de. Influence of Aluminide Coating Prepared by Chemical Vapor Depositionon High-Temperature Protective Performance of Thermal Barrier Coating on Single Crystal Superalloy [J]. VACUUM, 2022, 59(4): 56-63.
[4] BAI Ming-yuan, WANG Xin, ZHEN Zhen, MU Ren-de, HE Li-min, XU Zhen-hua. Phase Stability and Interfacial Bonding Strength of Rare Earth Zirconate Novel Thermal Barrier Coatings [J]. VACUUM, 2021, 58(4): 12-20.
[5] ZHAI Rui-qiong, REN Guo-hua, TIAN Dong-bo, LI Yu, YANG Yan-bin, LIU Chong. Advances in research on low-orbit ultraviolet, charged particles, thermal cycling and atomic oxygen synergistic effects [J]. VACUUM, 2019, 56(1): 72-76.
[6] CHANG Zhen-dong, MU Ren-de, HE Li-min, HUANG Guang-hong, LI Jian-ping. Reflectance spectroscopy study on TBCs prepared by EB-PVD [J]. VACUUM, 2018, 55(5): 46-50.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LI De-tian, CHENG Yong-jun, ZHANG Hu-zhong, SUN Wen-jun, WANG Yong-jun, SUN Jian, LI Gang, . Preparations and applications of carbon nanotube field emitters[J]. VACUUM, 2018, 55(5): 1 -9 .
[2] ZHOU Bin-bin, ZHANG jian, HE Jian-feng, DONG Chang-kun. Carbon nanotube field emission cathode based on direct growth technique[J]. VACUUM, 2018, 55(5): 10 -14 .
[3] CHAI Xiao-tong, WANG Liang, WANG Yong-qing, LIU Ming-kun, LIU Xing-zhou, GAN Shu-yi. Operating parameter data acquisition system for single vacuum pump based on STM32F103 microcomputer[J]. VACUUM, 2018, 55(5): 15 -18 .
[4] LI Min-jiu, XIONG Tao, JIANG Ya-lan, HE Yan-bin, CHEN Qing-chuan. 20kV high voltage based on double transistor forward converter pulse power supply for metal deburring[J]. VACUUM, 2018, 55(5): 19 -24 .
[5] LIU Yan-wen, MENG Xian-zhan, TIAN Hong, LI Fen, SHI Wen-qi, ZHU Hong, GU Bing. Test of ultra high vacuum in space traveling-wave tube[J]. VACUUM, 2018, 55(5): 25 -28 .
[6] XU Fa-jian, WANG Hai-lei, ZHAO Cai-xia, HUANG Zhi-ting. Application of chemical gases vacuum-compression recovery system in environmental engineering[J]. VACUUM, 2018, 55(5): 29 -33 .
[7] XIE Yuan-hua, HAN Jin, ZHANG Zhi-jun, XU Cheng-hai. Discussion on present situation and development trend of vacuum conveying[J]. VACUUM, 2018, 55(5): 34 -37 .
[8] SUN Li-zhi, YAN Rong-xin, LI Tian-ye, JIA Rui-jin, LI Zheng, SUN Li-chen, WANG Yong, WANG Jian, . Research on distributing law of Xenon in big accumulation chamber[J]. VACUUM, 2018, 55(5): 38 -41 .
[9] HUANG Si, WANG Xue-qian, MO Yu-shi, ZHANG Zhan-fa, YING Bing. Experimental study on similarity law of liquid ring compressor performances[J]. VACUUM, 2018, 55(5): 42 -45 .
[10] CHANG Zhen-dong, MU Ren-de, HE Li-min, HUANG Guang-hong, LI Jian-ping. Reflectance spectroscopy study on TBCs prepared by EB-PVD[J]. VACUUM, 2018, 55(5): 46 -50 .