欢迎访问沈阳真空杂志社 Email Alert    RSS服务

VACUUM ›› 2023, Vol. 60 ›› Issue (3): 5-11.doi: 10.13385/j.cnki.vacuum.2023.03.02

• Thin Film • Previous Articles     Next Articles

Effect of Incident Angle under Deposition on the Morphology and Properties of Thermal Barrier Coatings

ZHANG Bin1, CAI Yan1, ZHANG Tao2, CHANG Zhen-dong1, ZENG Ling-yu2, MU Ren-de1   

  1. 1. AECC Beijing Institute of Aeronautical Materials, Beijing 100095, China;
    2. AECC Shenyang Aero Engine Research Institute, Shenyang 110015, China
  • Received:2022-12-26 Online:2023-05-25 Published:2023-05-30
  • Supported by:
    National Science and Technology Major Project(J2019-VI-0002-0115)

Abstract: The NiCrAlYSi (HY3) metal-bonded layer was prepared on the DZ125 alloy substrate by vacuum arc plating (ARC), and then the yttrium oxide stabilized zirconia(6-8YSZ) ceramic coatings were deposited by electron beam physical vapor deposition(EB-PVD) at five incidence angles of 0°, 20°, 40°, 60°, and 80°, respectively. The effect of incident angle on the morphology and properties of the coating was studied. The results show that the thermal barrier coatings with five incidence angles can form columnar crystal structure, and the porosity and columnar crystal tilt angle gradually increase with increasing incidence angles, while the coating thickness gradually decreases. The bonding strength of the coated specimens was tested, and the bonding strength is above 55MPa at the incidence angles of 0° to 40°, and decreases to 15.7MPa when the incidence angle increasing to 80°. Under the thermal shock conditions, TGO is formed between the ceramic surface layer and the substrate.The porosity of the coating is different at different incidence angles, and the growth rate of TGO is inconsistent, resulting in significant differences in the thermal shock life. The thermal shock life of the coating at the incidence angles of 0° to 40° exceeds 4000 times, while that of the coating at the incidence angle of 60° is 3371 times and the shortest one at the incidence angle of 80° is only 1836 times.

Key words: incidence angle, electron beam physical vapor deposition, thermal barrier coating, bonding strength, thermal shock test

CLC Number:  TG174.4

[1] CLARKE D R, LEVI C G.Materialsdesign for then extgeneration thermal barrier coatings[J]. Annual Review of Materials Research, 2003, 33: 383-417.
[2] 袁佟, 邓畅光, 毛杰, 等. 等离子喷涂-物理气相沉积制备7YSZ热障涂层及其热导率研究[J]. 材料工程, 2017, 45(7): 1-6.
[3] BLANCHARD F, KADI M J, BOUSSER E, et al.Effect of thermal ageing on the optical properties and pore structure of thermal barrier coatings[J]. Surface & Coatings Technology, 2023, 452: 129080.
[4] SONG J B, WANG L S, DONG H, et al.Long lifespan thermal barrier coatings overview: materials, manufacturing, failure mechanisms, and multiscale structural design[J]. Ceramics International, 2023, 49(1): 1-23.
[5] KADAM N R, KARTHIKEYAN G,KULKARNI D M, et al.The effect of spray angle on the microstructural and mechanical properties of plasma sprayed 8YSZ thermal barrier coatings[J]. Journal of Micromanufacturing, 2022, 5(2): 181-192.
[6] 张鹏飞, 李建平, 蔡妍, 等. DZ125合金真空电弧镀沉积复合涂层技术[J].航空材料学报, 2020, 40(2): 22-27.
[7] 郭洪波,宫声凯,徐惠彬. 新型高温/超高温热障涂层及制备技术研究进展[J]. 航空学报, 2014, 35(10): 2722-2732.
[8] CHEN W R, WU X, PATNAIK P C, et al.TGO growth behaviour in TBCs with APS and HVOF bond coats[J]. Surface & Coatings Technology, 2007, 202(12): 2677-2683.
[9] BAI Y, DING C H, LI H Q, et al.Isothermal oxidation behavior of supersonic atmospheric plasma-sprayed thermal barrier coating system[J]. Journal of Thermal Spray Technology, 2013, 22(7): 1201-1209.
[10] AN G S, LI W S, FENG L, et al.Isothermal oxidation and TGO growth behaviors of YAG/YSZ double-ceramic-layer thermal barrier coatings[J]. Ceramics International, 2021, 47(17): 24320-24330.
[11] 李帅, 底月兰, 王海斗, 等. 热障涂层TGO界面应力分布及裂纹扩展行为的研究进展[J]. 表面技术, 2021, 50(6): 138-147.
[12] 刘林涛, 张勇, 吕海兵, 等. EB-PVD热障涂层粘结层/TGO界面性能的研究进展[J]. 材料导报, 2021, 35(增刊1): 160-163.
[13] JONES R L, MESS D.Improved tetragonal phase stability at1400℃ with scandia,yttria-stabilized zirconia[J]. Surface & Coatings Technology, 1996, 86/87: 94-101.
[14] SZYMANSKI K, GORAL M, KUBASZEK T, et al.Microstructure of TBC coatings deposited by HVAF and PS-PVD methods[J]. Solid State Phenomena, 2015, 227: 373-376.
[15] CHEN Q Y, LI C X, ZHAO J Z, et al.Microstructure of YSZ coatings deposited by PS-PVD using 45kW shrouded plasma torch[J]. Materials and Manufacturing Processes, 2015, 31(9): 1183-1191.
[16] DANIEL K, FENG C, GAO S.Application of multispectral radiation thermometry in temperature measurement of thermal barrier coated surfaces[J]. Measurement, 2016, 92: 218-223.
[17] LANCE M J, HAYNES J A, PINT B A.Pint. The effects of temperature and substrate curvature on TBC lifetime and residual stress in alumina scales beneath APS YSZ[J]. Surface & Coatings Technology, 2016, 308: 19-23.
[18] OSORIO J D, HERNÁNDEZ-ORTIZ J P, TORO A. Microstructure characterization of thermal barrier coating systems after controlled exposure to a high temperature[J]. Ceramics International, 2014, 40(3): 4663-4671.
[19] SONG H, KIM Y, KOO J M, et al.Durability evaluation of thermal barrier coating (TBC) at high temperature[J]. Applied Mechanics and Materials, 2013, 467: 41-46.
[20] SARUHAN B, RYUKHTIN V, KELM K.Correlation of thermal conductivity changes with anisotropic nano-pores of EB-PVD deposited FYSZ-coatings[J]. Surface & Coatings Technology, 2011, 205(23/24): 5369-5378.
[21] ZHAO H B, YU F L, BENNETT T D, et al.Morphology and thermal conductivity of yttria-stabilized zirconia coatings[J]. Acta Materialia, 2006, 54(19): 5195-5207.
[22] NIEUWENHUIZEN J M, HAANSTRA H B.Microfractography of thin films[J]. Philips Technology, 1966, 27: 87-91.
[23] WADA K, YOSHIYA M, YAMAGUCHI N, et al.Texture and microstructure of ZrO2-4mol% Y2O3 layers obliquely deposited by EB-PVD[J]. Surface & Coatings Technology, 2006, 200: 2725-2730.
[24] TAIT R N, SMY T, BRETTA M J.Modelling and characterization of columnar growth in evaporated films[J]. Thin Solid Films, 1993, 226: 196-201.
[25] LICHTER S, CHEN J.Model for columnar microstructure of thin solid films[J]. Physical Review Letters, 1986, 56(13): 1396-1399.
[26] BERNIER J S, LEVAN G, MANIRUZZAMAN M, et al. Crystallographic texture of EB-PVD TBCs deposited on stationary flat Surfaces in a multiple ingot coating chamber as a function of chamber position[J]. Surface & Coatings Technology, 2003, 163/164: 95-99.
[27] CHEN W R, WU X, MARPLE B R, et al.TGO growth behavior in TBCs with APS and HVOF bond coats[J]. Surface & Coatings Technology[J], 2008, 202(12): 2677-2683.
[28] 薛文利, 陆涛, 黄佳华,等. NiCrAlY+YSZ热障涂层循环氧化过程中的TGO增厚及失效行为[J]. 稀有金属材料与工程, 2022, 51(7): 2667-2672.
[29] 陈亚军. 热障涂层热生长氧化物形成及生长过程的干预与控制研究[D]. 天津: 天津大学, 2010.
[1] DENG Zhong-hua, CHANG Zhen-dong, XU Lei, HU Jiang-wei, CAI Yan, MU Ren-de. Research of Quick Measurement for PVD TBCs Thickness in Industrial Production Using Ball Crater Tester [J]. VACUUM, 2022, 59(6): 73-77.
[2] WANG Li-zhe, CAI Yan, ZHNG Ru-jing, HE Li-min, MU Ren-de. Influence of Aluminide Coating Prepared by Chemical Vapor Depositionon High-Temperature Protective Performance of Thermal Barrier Coating on Single Crystal Superalloy [J]. VACUUM, 2022, 59(4): 56-63.
[3] MENG Chao, YUE Shou-jing, XUAN Li-xin, XUE Hong-ming, GAO Zhen, WANG Xin-chao. Influence of Surface Plasma Activation on Cyanate Ester Composites [J]. VACUUM, 2022, 59(2): 6-10.
[4] WAN Shu-hong, LIN Jing, FENG Shuai. Research Progress of Diamond Coated Tools Prepared by Hot Filament CVD [J]. VACUUM, 2022, 59(1): 40-47.
[5] BAI Ming-yuan, WANG Xin, ZHEN Zhen, MU Ren-de, HE Li-min, XU Zhen-hua. Phase Stability and Interfacial Bonding Strength of Rare Earth Zirconate Novel Thermal Barrier Coatings [J]. VACUUM, 2021, 58(4): 12-20.
[6] CHANG Zhen-dong, MU Ren-de, HE Li-min, HUANG Guang-hong, LI Jian-ping. Reflectance spectroscopy study on TBCs prepared by EB-PVD [J]. VACUUM, 2018, 55(5): 46-50.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LI De-tian, CHENG Yong-jun, ZHANG Hu-zhong, SUN Wen-jun, WANG Yong-jun, SUN Jian, LI Gang, . Preparations and applications of carbon nanotube field emitters[J]. VACUUM, 2018, 55(5): 1 -9 .
[2] ZHOU Bin-bin, ZHANG jian, HE Jian-feng, DONG Chang-kun. Carbon nanotube field emission cathode based on direct growth technique[J]. VACUUM, 2018, 55(5): 10 -14 .
[3] CHAI Xiao-tong, WANG Liang, WANG Yong-qing, LIU Ming-kun, LIU Xing-zhou, GAN Shu-yi. Operating parameter data acquisition system for single vacuum pump based on STM32F103 microcomputer[J]. VACUUM, 2018, 55(5): 15 -18 .
[4] LI Min-jiu, XIONG Tao, JIANG Ya-lan, HE Yan-bin, CHEN Qing-chuan. 20kV high voltage based on double transistor forward converter pulse power supply for metal deburring[J]. VACUUM, 2018, 55(5): 19 -24 .
[5] LIU Yan-wen, MENG Xian-zhan, TIAN Hong, LI Fen, SHI Wen-qi, ZHU Hong, GU Bing. Test of ultra high vacuum in space traveling-wave tube[J]. VACUUM, 2018, 55(5): 25 -28 .
[6] XU Fa-jian, WANG Hai-lei, ZHAO Cai-xia, HUANG Zhi-ting. Application of chemical gases vacuum-compression recovery system in environmental engineering[J]. VACUUM, 2018, 55(5): 29 -33 .
[7] XIE Yuan-hua, HAN Jin, ZHANG Zhi-jun, XU Cheng-hai. Discussion on present situation and development trend of vacuum conveying[J]. VACUUM, 2018, 55(5): 34 -37 .
[8] SUN Li-zhi, YAN Rong-xin, LI Tian-ye, JIA Rui-jin, LI Zheng, SUN Li-chen, WANG Yong, WANG Jian, . Research on distributing law of Xenon in big accumulation chamber[J]. VACUUM, 2018, 55(5): 38 -41 .
[9] HUANG Si, WANG Xue-qian, MO Yu-shi, ZHANG Zhan-fa, YING Bing. Experimental study on similarity law of liquid ring compressor performances[J]. VACUUM, 2018, 55(5): 42 -45 .
[10] CHANG Zhen-dong, MU Ren-de, HE Li-min, HUANG Guang-hong, LI Jian-ping. Reflectance spectroscopy study on TBCs prepared by EB-PVD[J]. VACUUM, 2018, 55(5): 46 -50 .