欢迎访问沈阳真空杂志社 Email Alert    RSS服务

VACUUM ›› 2024, Vol. 61 ›› Issue (2): 37-41.doi: 10.13385/j.cnki.vacuum.2024.02.06

• Measurement and Control • Previous Articles     Next Articles

Effect of Temperature on the Leakage Rate of Graphene Vacuum Standard Leak

LIU Chu-yan, LIU Zhao-xian, REN Guo-hua, HAN Yan, SUN Li-chen, YAN Rong-xin, MENG Dong-hui   

  1. Beijing Institute of Spacecraft Environment Engineering, Beijing 100094, China
  • Received:2023-08-14 Online:2024-03-25 Published:2024-03-28

Abstract: Graphene vacuum standard leak is a kind of new vacuum standard leak based on graphene-derived materials, and the lower limit of leakage rate is lower than the general helium permeation leak rate, which can be used in the calibration of ultra-sensitive leak detection system. Based on the material characteristics of graphene, the leakage rate of graphene vacuum standard leak will change with temperature. In this paper, the influence of temperature on the leakage rate of graphene vacuum standard leak was studied. By measuring the leakage rate of the standard leak in different temperature environments, the temperature coefficient and the change rule of the leakage were obtained. The results show that the leakage rate of graphene vacuum standard leak changes linearly with temperature, and the temperature coefficient is lower than 2.5%/℃.

Key words: graphene, standard leak, ultra-sensitive leak detection, temperature coefficient

CLC Number:  TB77

[1] 刘秀林. 标准漏孔及其校准[J]. 计测技术, 2001, 21(5): 43-45.
[2] 孙立臣, 冯双宝. 关于检漏试验中漏率测量的几个问题的探讨[J]. 航天器环境工程, 2003, 20(4): 55-60.
[3] 左雷. 用于红外探测器组件检测的超高灵敏度检漏仪[J]. 激光与红外, 2011, 41(12): 1327-1330.
[4] 卢耀文,李得天,齐京,等. 一种下限为5×10-16Pa·m3/s的高精度超灵敏度检漏装置[J]. 真空科学与技术学报, 2019, 39(1): 1-5.
[5] 卢耀文, 刘志宏, 闫荣鑫, 等. 一种下限为10-10 Pa·m3/s的正压漏孔校准装置[J]. 真空科学与技术学报,2018, 38(12): 1019-1024.
[6] 肖立波, 陈旭, 黄天斌, 等. 超灵敏检漏的实时校准[J]. 真空科学与技术学报, 2006, 26(1): 54-56.
[7] 赵澜, 张涤新, 郭美如, 等. 渗氦型真空漏孔漏率的温度修正[J]. 真空与低温, 2007, 13(2): 90-93.
[8] 冯焱, 张建军, 张涤新. 温度对薄膜渗氦型漏孔漏率的影响研究[J]. 真空与低温, 2001, 7(4): 200-203.
[9] 于红燕. 石英渗氦型校准漏孔随温度变化性能的研究[C]//中国真空学会质谱与检漏专委会第十二届年会暨中国计量测试学会真空校准专委会第七届年会论文摘要集. 北京:中国真空学会, 2004.
[10] LIU Z, MENG D, REN G, et al.New leak elements for helium based on single-layer grapheme composite membranes[J]. Journal of Vacuum Science & Technology B, 2021, 39(4): 044202.
[11] SCHRIER J.Helium separation using porous graphene membranes[J]. The Journal of Physical Chemistry Letters, 2010, 1(15): 2284-2287.
[12] CHEN Y, ZOU J, CAMPBELL S J, et al.Boron nitride nanotubes: pronounced resistance to oxidation[J]. Applied Physics Letters, 2004, 84(13): 2430-2432.
[13] LEE C G, WEI X D, KYSAR J W, et al.Measurement of the elastic properties and intrinsic strength of monolayer graphene[J]. Science, 2008, 321(5887): 385-388.
[14] NIKKHO S, MIRZAEI M, SABET J K, et al.Enhanced quality of transfer-free graphene membrane for He/CH4 separation[J].Separation and Purification Technology, 2020, 232: 115972.
[15] LEE W C, BONDAZ L, HUANG S, et al.Centimeter-scale gas-sieving nanoporous single-layer graphene membrane[J]. Journal of Membrane Science, 2021, 618: 118745.
[16] BUNCH J S, VERBRIDGE S S, ALDEN J S, et al.Impermeable atomic membranes from graphene sheets[J]. Nano Letters, 2008, 8(8): 2458-2462.
[17] LEENAERTS O, PARTOENS B, PEETERS F M.Graphene: a perfect nanoballoon[J]. Applied Physics Letters, 2008, 93(19): 193107.
[18] O'HERN S C, STEWART C A, BOUTILIER M S H, et al. Selective molecular transport through intrinsic defects in a single layer of CVD graphene[J]. ACS Nano, 2012, 6(11): 10130-10138.
[19] BOUTILIER M S H, JANG D, IDROBO J C, et al. Molecular sieving across centimeter-scale single-layer nanoporous graphene membranes[J]. ACS Nano, 2017, 11(6): 5726-5736.
[20] 张晓波, 青芳竹, 李雪松. 化学气相沉积石墨烯薄膜的洁净转移[J]. 物理学报, 2019, 68(9): 7-17.
[1] HUANG Guang-hong, LI Di, LI Na, ZHEN Zhen, WANG Xin, XU Zhen-hua. Effect of H2 on the Graphene Growth at Different Stages in the Plasma Enhanced Chemical Vapor Deposition Process [J]. VACUUM, 2024, 61(1): 34-40.
[2] LIU Zhao-xian, MENG Dong-hui, REN Guo-hua, ZHANG Xiao, HAN Yan, LIU Chu-yan, SUN Li-chen, YAN Rong-xin. Preparation and Helium Permeation Properties of New Leak Elements Based on Subnanoporous Graphene Composite Membranes [J]. VACUUM, 2024, 61(1): 21-26.
[3] FANG Jiu-kang, DONG Shu-hong. Peeling Behaviors of Graphene Film by Molecular Dynamics Simulations [J]. VACUUM, 2023, 60(5): 60-65.
[4] TIAN Ming-li, QIU Li, DONG Yun-ning, CHEN Jun-ru, CHEN You-qi, TANG Rong, ZHANG Ji-feng. An Application of Ultrasensitive Leak Detection Technology Integrated in High Pumping Speed Automatic Exhaust Table [J]. VACUUM, 2022, 59(3): 63-67.
[5] ZHU Wei, LU Qun-xu, QIAN Wei-jin, HUANG Wei-jun, DONG Chang-kun. Study on a Novel Micro-Focus Electron Source for Carbon Nanotubes [J]. VACUUM, 2022, 59(1): 48-53.
[6] ZHANG Xiao, LIU Zhao-xian, MENG Dong-hui, REN Guo-hua, WANG Li-na, YAN Rong-xin. Simulation Study on Porous Graphene Helium Permeation [J]. VACUUM, 2021, 58(1): 10-14.
[7] GAO Chao, ZHANG Ji-feng, TANG Rong. Development of CVD Reaction Furnance for Graphene Preparation [J]. VACUUM, 2020, 57(3): 30-33.
[8] RAN Biao, LIU Fei, YU Xiang. In-situ Growth of Graphene on Cemented Carbide through Amorphous SiC [J]. VACUUM, 2019, 56(4): 24-30.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LI De-tian, CHENG Yong-jun, ZHANG Hu-zhong, SUN Wen-jun, WANG Yong-jun, SUN Jian, LI Gang, . Preparations and applications of carbon nanotube field emitters[J]. VACUUM, 2018, 55(5): 1 -9 .
[2] ZHOU Bin-bin, ZHANG jian, HE Jian-feng, DONG Chang-kun. Carbon nanotube field emission cathode based on direct growth technique[J]. VACUUM, 2018, 55(5): 10 -14 .
[3] CHAI Xiao-tong, WANG Liang, WANG Yong-qing, LIU Ming-kun, LIU Xing-zhou, GAN Shu-yi. Operating parameter data acquisition system for single vacuum pump based on STM32F103 microcomputer[J]. VACUUM, 2018, 55(5): 15 -18 .
[4] LI Min-jiu, XIONG Tao, JIANG Ya-lan, HE Yan-bin, CHEN Qing-chuan. 20kV high voltage based on double transistor forward converter pulse power supply for metal deburring[J]. VACUUM, 2018, 55(5): 19 -24 .
[5] LIU Yan-wen, MENG Xian-zhan, TIAN Hong, LI Fen, SHI Wen-qi, ZHU Hong, GU Bing. Test of ultra high vacuum in space traveling-wave tube[J]. VACUUM, 2018, 55(5): 25 -28 .
[6] XU Fa-jian, WANG Hai-lei, ZHAO Cai-xia, HUANG Zhi-ting. Application of chemical gases vacuum-compression recovery system in environmental engineering[J]. VACUUM, 2018, 55(5): 29 -33 .
[7] XIE Yuan-hua, HAN Jin, ZHANG Zhi-jun, XU Cheng-hai. Discussion on present situation and development trend of vacuum conveying[J]. VACUUM, 2018, 55(5): 34 -37 .
[8] SUN Li-zhi, YAN Rong-xin, LI Tian-ye, JIA Rui-jin, LI Zheng, SUN Li-chen, WANG Yong, WANG Jian, . Research on distributing law of Xenon in big accumulation chamber[J]. VACUUM, 2018, 55(5): 38 -41 .
[9] HUANG Si, WANG Xue-qian, MO Yu-shi, ZHANG Zhan-fa, YING Bing. Experimental study on similarity law of liquid ring compressor performances[J]. VACUUM, 2018, 55(5): 42 -45 .
[10] CHANG Zhen-dong, MU Ren-de, HE Li-min, HUANG Guang-hong, LI Jian-ping. Reflectance spectroscopy study on TBCs prepared by EB-PVD[J]. VACUUM, 2018, 55(5): 46 -50 .