欢迎访问沈阳真空杂志社 Email Alert    RSS服务

VACUUM ›› 2024, Vol. 61 ›› Issue (6): 1-6.doi: 10.13385/j.cnki.vacuum.2024.06.01

• Thin Film •     Next Articles

Study on Aluminum Film Evaporation Using Electron Beam Equipment

FU Xue-cheng, QU Min-ni, QUAN Xue-ling, WU Li-ying, WANG Ying, CHENG Xiu-lan   

  1. Advanced Electronics Materials and Devices, Shanghai Jiao Tong University, Shanghai 200240, China
  • Received:2023-12-21 Online:2024-11-25 Published:2024-11-29

Abstract: Using electron beam evaporation equipment to deposit high-quality aluminum film is a big challenge in the film process. Therefore, a method was proposed to deposit aluminum film by using a modified Al2O3 crucible as the lining pot, and adding materials and pre-melting them three times. The effects of different evaporation rates on the electrical resistivity, grain morphology and composition of aluminum films were studied. The results show that the convex molten aluminum liquid surface can increase the contact angle with the crucible wall, basically eliminate the aluminum oxide impurities in the aluminum film. With the increase of evaporation rate, the grain size of aluminum film increases and the average resistivity decreases. The aluminum film with purity of 99.9% and the lowest resistivity of 3.4×10-6 Ω·cm can be prepared by adding materials for pre-melting three times.

Key words: electron beam evaporation, aluminum film, water-cooled crucible, alumina crucible

CLC Number:  TB43

[1] 戴永年. 二元合金相图集[M].北京:科学出版社,2009:38-74
[2] 姚惠民,李淑娜,杨建勋,等.一种半导体生产用石墨坩埚蒸铝的工艺: CN114481031A [P].2022-05-13.
[3] 黄建华. 真空蒸镀铝用碳—石墨蒸发舟应用技术综述[J].炭素,1994(2):39-43.
[4] KUMM J, HARTMANN P, EBERLEIN D,et al.Adhesion quality of evaporated aluminum layers on passivation layers for rear metallization of silicon solar cells[J]. Thin Solid Films,2016,612:393-399.
[5] LIU H Z, BO R C, LIU H F, et al.Study of the influences of molecular planarity and aluminum evaporation rate on the performances of electrical memory devices[J]. Journal of Materials Chemistry C: Materials for Optical and Electronic Devices,2014,2(28) : 5709-5716.
[6] 令晓明, 杨帆, 成佰新, 等. 真空蒸镀铝及保护膜的表面形貌和光学性能研究[J]. 真空与低温,2011,17(2):91-95.
[7] 徐冠群, 梁宗存. 背面蒸镀铝金属化N型PERT太阳电池退火过程的研究[J]. 可再生能源, 2016,34(7):970-975.
[8] FRANKEL G S, RUSSAK M A, JAHNES C V, et al.Pitting of sputtered aluminum alloy thin films[J]. Journal of The Electrochemical Society,1989,136(4): 1243-1244.
[9] MWEMA F M, AKINLABI E T, OLADIJO O P, et al.Materials research; investigators from university of Johannesburg target materials research[J]. Materials Research,2019, 6(5): 056404.
[10] 段颖妮, 毛莉萍.磁控溅射铝膜的表面形貌及粗糙度的原子力显微镜观测[J].科技视界,2015(10):60.
[11] 花银群, 朱爱春, 陈瑞芳, 等. 直流磁控溅射铝纳米颗粒膜的微结构及电学特性[J]. 功能材料,2015(4):4071-4075.
[12] 吴红艳, 刘剑, 赵浩峰, 等. 磁控溅射铝膜的微观结构对磁致冷钆腐蚀性能的影响[J]. 中国有色金属学报(英文版),2013(11):3280-3285.
[13] 胡芳, 代明江, 林松盛, 等. 循环氩离子轰击对磁控溅射铝膜结构和性能的影响[J]. 中国表面工程,2015,28(1):49-55.
[14] 严宗达, 王洪礼.热应力[M]. 北京:高等教育出版社,1991:11-13.
[15] 付学成, 毛海平, 瞿敏妮, 等. 玻璃碳坩埚蒸镀金膜时物料飞溅的机理分析与控制[J]. 真空,2021,58(6):27-32.
[16] 滕新荣. 表面物理化学[M].北京:化工工业出版社,2009:4.
[17] 曾作祥, 孙莉.界面现象[M].上海:华东理工大学出版社,2016:103.
[18] 张广平, 李孟林, 吴细毛, 等.尺度对金属材料电阻率影响的研究进展[J].材料研究学报, 2014, 28(2): 81-87.
[1] YAN Chao, ZHANG Tao, JIA Zi-zhao, CHENG Cheng, ZHAO Guo-hua. Development of Water-cooled Copper Crucible for Electron Beam Melting [J]. VACUUM, 2024, 61(2): 78-85.
[2] FU Xue-cheng, WU Li-ying, LUAN Zhen-xing, MAO Hai-ping, WANG Ying. Modification of Tungsten Crucible for Electron Beam Evaporation of Silver Film [J]. VACUUM, 2022, 59(3): 41-45.
[3] FU Xue-cheng, MAO Hai-ping, QU Min-ni, WU Li-ying, WANG Ying. Mechanism Analysis and Control of Material Splashing in the Deposition of Gold Film by using Glassy Carbons Crucible [J]. VACUUM, 2021, 58(6): 27-32.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LI De-tian, CHENG Yong-jun, ZHANG Hu-zhong, SUN Wen-jun, WANG Yong-jun, SUN Jian, LI Gang, . Preparations and applications of carbon nanotube field emitters[J]. VACUUM, 2018, 55(5): 1 -9 .
[2] ZHOU Bin-bin, ZHANG jian, HE Jian-feng, DONG Chang-kun. Carbon nanotube field emission cathode based on direct growth technique[J]. VACUUM, 2018, 55(5): 10 -14 .
[3] CHAI Xiao-tong, WANG Liang, WANG Yong-qing, LIU Ming-kun, LIU Xing-zhou, GAN Shu-yi. Operating parameter data acquisition system for single vacuum pump based on STM32F103 microcomputer[J]. VACUUM, 2018, 55(5): 15 -18 .
[4] LI Min-jiu, XIONG Tao, JIANG Ya-lan, HE Yan-bin, CHEN Qing-chuan. 20kV high voltage based on double transistor forward converter pulse power supply for metal deburring[J]. VACUUM, 2018, 55(5): 19 -24 .
[5] LIU Yan-wen, MENG Xian-zhan, TIAN Hong, LI Fen, SHI Wen-qi, ZHU Hong, GU Bing. Test of ultra high vacuum in space traveling-wave tube[J]. VACUUM, 2018, 55(5): 25 -28 .
[6] XU Fa-jian, WANG Hai-lei, ZHAO Cai-xia, HUANG Zhi-ting. Application of chemical gases vacuum-compression recovery system in environmental engineering[J]. VACUUM, 2018, 55(5): 29 -33 .
[7] XIE Yuan-hua, HAN Jin, ZHANG Zhi-jun, XU Cheng-hai. Discussion on present situation and development trend of vacuum conveying[J]. VACUUM, 2018, 55(5): 34 -37 .
[8] SUN Li-zhi, YAN Rong-xin, LI Tian-ye, JIA Rui-jin, LI Zheng, SUN Li-chen, WANG Yong, WANG Jian, . Research on distributing law of Xenon in big accumulation chamber[J]. VACUUM, 2018, 55(5): 38 -41 .
[9] HUANG Si, WANG Xue-qian, MO Yu-shi, ZHANG Zhan-fa, YING Bing. Experimental study on similarity law of liquid ring compressor performances[J]. VACUUM, 2018, 55(5): 42 -45 .
[10] CHANG Zhen-dong, MU Ren-de, HE Li-min, HUANG Guang-hong, LI Jian-ping. Reflectance spectroscopy study on TBCs prepared by EB-PVD[J]. VACUUM, 2018, 55(5): 46 -50 .