欢迎访问沈阳真空杂志社 Email Alert    RSS服务

VACUUM ›› 2024, Vol. 61 ›› Issue (2): 78-85.doi: 10.13385/j.cnki.vacuum.2024.02.14

• Vacuum Metallurgy and Thermal Engineering • Previous Articles     Next Articles

Development of Water-cooled Copper Crucible for Electron Beam Melting

YAN Chao1,2, ZHANG Tao1,2, JIA Zi-zhao1,2, CHENG Cheng1, ZHAO Guo-hua1   

  1. 1. Research Institute of Physics and Chemistry Engineering of Nuclear Industry, Tianjin 300180, China;
    2. National Key Laboratory of Particle Transport and Separation Technology, Tianjin 300180, China
  • Received:2023-08-10 Online:2024-03-25 Published:2024-03-28

Abstract: As an excellent vacuum smelting technology, the structural design of the water-cooled crucible, the core component of electron beam melting, is particularly important. The crucible cooling performance directly affects the performance and safety of electron beam melting. The influences of crucible water channel structure and melt pool morphology on the cooling capacity of crucibles were investigated through theoretical analysis, numerical simulation, and an experimental assessment. The crucible structure was determined through crucible material selection, melt pool utilization rate analysis, energy loss analysis and cooling calculation. A numerical simulation model was established and used to compare the cooling performance of two types of molten pool crucibles under different loading conditions, and experimental assessment was conducted on crucible with excellent performance. The results show that under different ingot thicknesses, the cooling water temperature and surface temperature of crucible B are lower than those of crucible A in numerical simulation, indicating that the shape of the molten pool and the structure of the water channel in crucible B are more reasonable and have better heat dissipation effects. The experimental assessment shows that the state of crucible B is stable and meets the design requirements.

Key words: water-cooled crucible, waterway design, molten pool morphology, simulation, electron beam melting

CLC Number:  TF136;TF841

[1] 刘喜海, 徐成海, 郑险峰. 真空冶炼[M]. 北京: 化学工业出版社, 2013.
[2] PATON B E, TRYGUB M P, AKHONIN S V.钛、锆及其合金的电子束熔炼[M]. 樊生文, 王殿儒, 张海峰, 译. 北京: 机械工业出版社, 2014.
[3] 王强. 电子束熔炼提纯冶金级硅工艺研究[D]. 大连:大连理工大学, 2010.
[4] 张延宾, 孙照富, 尹中荣. 大型太阳能级多晶硅提纯用真空电子束熔炼炉的研制[J]. 真空, 2014, 51(4): 22-25.
[5] 成成, 贾子朝, 吕绪明, 等. 真空电子束熔炼炉用冷却装置的模块化设计和应用[J]. 真空, 2023, 60(2): 68-72.
[6] ASGHAR H M, SHIFA M S, GILANI Z A, et al.Mechanism of the effect of electron beam melting on the distribution of oxygen, nitrogen and carbon in silicon[J].International Journal of Materials Research, 2019, 110(5): 476-480.
[7] KOPTYUG A, BOTERO C, SJSTRM W, et al.Electron beam melting: from shape freedom to material properties control at macro-and microscale[J].Materials Science Forum, 2021, 1016: 755-761.
[8] REN X, PENG H, LI J, et al.Selective electron beam melting (SEBM) of pure tungsten: metallurgical defects, microstructure, texture and mechanical properties[J]. Materials, 2022, 15(3): 1172.
[9] UÇAK N, ÇIÇEK A, ASLANTAS K. Machinability of 3D printed metallic materials fabricated by selective laser melting and electron beam melting: a review[J]. Journal of Manufacturing Processes, 2022, 80: 414-457.
[10] ELLIS E A I, SPRAYBERRY M A, LEDFORD C, et al. Processing of tungsten through electron beam melting[J]. Journal of Nuclear Materials, 2021, 555: 153041.
[11] 张志平, 许忠政, 张黎源, 等. 专用电子束熔炼炉真空抽气系统设计[J]. 真空, 2021, 58(5): 42-45.
[12] 张志平, 张帆, 张黎源, 等. 专用电子束熔炼炉的研制[J]. 天津冶金, 2015(5): 59-62.
[13] 张志平. 电子束熔炼炉连铸系统设计[J]. 真空, 2019,56(4): 40-43.
[14] 朱一明, 王德武. 电子枪加热坩埚熔池的传热研究[J]. 原子能科学技术, 2000(3): 238-243.
[15] 刘欢, 张帆, 罗立平. 电子束熔炼用水冷铜坩埚水道数值模拟[C]//中国核学会.中国核科学技术进展报告(第五卷)——中国核学会2017年学术年会论文集第4册(同位素分离分卷). 北京:中国原子能出版社, 2017: 254-261.
[16] SCHWARZ H.Mechanism of high-power-density electron beam penetration in metal[J]. Journal of Applied Physics, 1964, 35(7): 2020-2029.
[17] BEREZIN B K.Interaction of intense electron beams with a plasma[J]. The Soviet Journal of Atomic Energy, 1962, 11(6): 1144-1147.
[18] 张以忱. 电子枪与离子束技术[M]. 北京: 冶金工业出版社, 2004.
[19] 王德武. JGFL同位素理论及其应用[M]. 北京: 原子能出版社, 1999.
[20] 徐宝东. 化工管路设计手册[M]. 北京: 化学工业出版社, 2011.
[1] YU Da-yang, WU Gai. Numerical Simulation of the Influence of Gas Distribution and Film Deposition Process in MOCVD Reactor with Large-sized Square Carrier [J]. VACUUM, 2024, 61(2): 22-28.
[2] JIA Zi-zhao, GUO Zhi-wei, GAO Xue-lin. Optimization and Simulation of High-precision Electron Beam Deflection System [J]. VACUUM, 2024, 61(2): 47-52.
[3] HE Tian-yi, YUE Xiang-ji, ZHANG Zhi-jun, BA De-chun, FENG Xiao-rong, YANG Fan. Numerical Simulation of Gas Flow in a Fixed Pitch Screw Vacuum Pump [J]. VACUUM, 2024, 61(1): 52-57.
[4] LIU Zhong-bo. Application of Vacuum System in Simulating Low-pressure Area Environment on Martian Surface [J]. VACUUM, 2024, 61(1): 64-67.
[5] YAN Chao, ZHANG Tao, JIA Zi-zhao, CHENG Cheng, XU Wen-qiang. Development of Feeding and Casting Ingot Dragging Device for Electron Beam Melting [J]. VACUUM, 2024, 61(1): 78-82.
[6] XING Yin-long, WU Jie-feng, PEI Shi-lun, LIU Zhi-hong, LI Bo, LIU Zhen-fei, MA Jian-guo. Study on the Forming Technology of Boat-shaped High Frequency Cavity Shell [J]. VACUUM, 2023, 60(6): 78-83.
[7] LIU Zhong-bo. Application of Vacuum in High Altitude Simulation Systems [J]. VACUUM, 2023, 60(6): 84-86.
[8] FANG Jiu-kang, DONG Shu-hong. Peeling Behaviors of Graphene Film by Molecular Dynamics Simulations [J]. VACUUM, 2023, 60(5): 60-65.
[9] QI Song-song, NI Jun, LI Zhuo-hui, SHI Cheng-tian, FENG Lei, CHEN Hong-bin, LI Can-lun. Research on Gate Design and Optimization of Super Large Vacuum Vessel [J]. VACUUM, 2023, 60(5): 81-85.
[10] LI Ping-chuan, XU Li, ZHAO Jie, ZHANG Fan, XIONG Si-wei, JIAN Yi, ZHANG Zheng-hao, TANG De-li. Numerical Simulation and Experimental Research on Miniaturized Anode Layer Thruster [J]. VACUUM, 2023, 60(4): 36-41.
[11] SHI Xiao-qian, LIU Jia-hui, CHEN Xue-ying, GUO Fang-zhun. Physical Design of High Performance Electron Gun [J]. VACUUM, 2023, 60(3): 62-66.
[12] FENG Zhi-meng, LIU Hai-jing, WANG Fei, LI Can-lun, QIAO Hong, JING Jia-rong. Design and Calculation of O-type Rubber Sealing for Space Environment Simulation Equipment [J]. VACUUM, 2023, 60(2): 57-62.
[13] WANG Gui-peng, HUANG Yu-xing, QU Shao-fen, GAO Guang-wei, XIE Yuan-hua, LIU Kun, BA De-chun. Study on Influence of the Change of Inlet and Outlet Angle of Impeller Blade of Vacuum Heat Treatment Furnace on Cooling Efficiency [J]. VACUUM, 2022, 59(5): 63-68.
[14] FANG Ming-yuan, WU Yue, ZHANG Yang, XU Zhong-xu. Simulation on Thermal Comfort of Astronaut Wearing Space Suit Under the Condition of Cabin Pressure Loss [J]. VACUUM, 2022, 59(4): 80-85.
[15] LIU Sheng, CUI Yu-hao, DOU Ren-chao, SHI Li-xia, SUN Li-chen, REN Guo-hua, YAN Rong-xin. Numerical Simulation on Internal Pressure Variation of Test Specimens During Vacuum Test [J]. VACUUM, 2022, 59(3): 12-15.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LI De-tian, CHENG Yong-jun, ZHANG Hu-zhong, SUN Wen-jun, WANG Yong-jun, SUN Jian, LI Gang, . Preparations and applications of carbon nanotube field emitters[J]. VACUUM, 2018, 55(5): 1 -9 .
[2] ZHOU Bin-bin, ZHANG jian, HE Jian-feng, DONG Chang-kun. Carbon nanotube field emission cathode based on direct growth technique[J]. VACUUM, 2018, 55(5): 10 -14 .
[3] CHAI Xiao-tong, WANG Liang, WANG Yong-qing, LIU Ming-kun, LIU Xing-zhou, GAN Shu-yi. Operating parameter data acquisition system for single vacuum pump based on STM32F103 microcomputer[J]. VACUUM, 2018, 55(5): 15 -18 .
[4] LI Min-jiu, XIONG Tao, JIANG Ya-lan, HE Yan-bin, CHEN Qing-chuan. 20kV high voltage based on double transistor forward converter pulse power supply for metal deburring[J]. VACUUM, 2018, 55(5): 19 -24 .
[5] LIU Yan-wen, MENG Xian-zhan, TIAN Hong, LI Fen, SHI Wen-qi, ZHU Hong, GU Bing. Test of ultra high vacuum in space traveling-wave tube[J]. VACUUM, 2018, 55(5): 25 -28 .
[6] XU Fa-jian, WANG Hai-lei, ZHAO Cai-xia, HUANG Zhi-ting. Application of chemical gases vacuum-compression recovery system in environmental engineering[J]. VACUUM, 2018, 55(5): 29 -33 .
[7] XIE Yuan-hua, HAN Jin, ZHANG Zhi-jun, XU Cheng-hai. Discussion on present situation and development trend of vacuum conveying[J]. VACUUM, 2018, 55(5): 34 -37 .
[8] SUN Li-zhi, YAN Rong-xin, LI Tian-ye, JIA Rui-jin, LI Zheng, SUN Li-chen, WANG Yong, WANG Jian, . Research on distributing law of Xenon in big accumulation chamber[J]. VACUUM, 2018, 55(5): 38 -41 .
[9] HUANG Si, WANG Xue-qian, MO Yu-shi, ZHANG Zhan-fa, YING Bing. Experimental study on similarity law of liquid ring compressor performances[J]. VACUUM, 2018, 55(5): 42 -45 .
[10] CHANG Zhen-dong, MU Ren-de, HE Li-min, HUANG Guang-hong, LI Jian-ping. Reflectance spectroscopy study on TBCs prepared by EB-PVD[J]. VACUUM, 2018, 55(5): 46 -50 .