欢迎访问沈阳真空杂志社 Email Alert    RSS服务

VACUUM ›› 2021, Vol. 58 ›› Issue (6): 27-32.doi: 10.13385/j.cnki.vacuum.2021.06.05

• Thin Film • Previous Articles     Next Articles

Mechanism Analysis and Control of Material Splashing in the Deposition of Gold Film by using Glassy Carbons Crucible

FU Xue-cheng, MAO Hai-ping, QU Min-ni, WU Li-ying, WANG Ying   

  1. Advanced Electronics Materials and Devices,Shanghai Jiao Tong University,Shanghai 200240,China
  • Received:2020-10-10 Online:2021-11-25 Published:2021-11-30

Abstract: When glassy carbons crucible and electron beam evaporation equipment are used for coating, with the consumption of gold material, more particles on the surface of gold film are obtained at the same deposition rate, which seriously affects the flatness and local uniformity of the film. In this work, the phenomenon was explained by the theory that the corona discharge of spherical droplet on the crucible wall caused by thermally electron emission from liquid metal surface led to material splashing.At the same deposition rate, two kinds of gold films were obtained by changing the volume proportion of gold materials in the crucible, and their surface morphology and infrared spectral transmission properties were compared and analyzed. The results showed that when the material volume accounted for about 26% of the crucible volume, there were many black particles on the gold film surface, which were approximately spherical or ellipsoidal in shape, and the main component is still gold. When the material volume accounted for about 26% of the crucible volume,there were no black particles on the gold film surface, and the infrared spectral transmittance is 5% lower than the former.

Key words: electron beam evaporation, glassy carbons crucible, gold film, tip discharge

CLC Number: 

  • TB43
[1] HARRIS P J F. Fullerene-related structure of commercial glassy carbons[J]. Philosophical Magazine, 2004, 84(29): 3159-3167.
[2] BAUER J, SCHROER A, SCHWAIGER R, et al.Approaching theoretical strength in glassy carbon nanolattices[J]. Nature Materials, 2016, 15(4): 438-443.
[3] 董家君. 高压下石墨与玻璃碳结构转变研究[D]. 长春:吉林大学, 2020.
[4] GONG Q J, HAN H X, WANG Y D, et al.An electrochemical sensor for dopamine detection using poly-tryptophan composited graphene on glassy carbon as the electrode[J]. Carbon, 2020(167): 931.
[5] CITTAN M, ALTUNTAŞE, ÇELIK A. Multi-walled carbon nanotube modified glassy carbon electrode as curcumin sensor[J]. Monatshefte Für Chemie-Chemical Monthly, 2020, 151(6): 881-888.
[6] CHAUHAN G, ÁNGELES A L, GONZALEZ-ONZÁLEZE, et al. Nano-spaced gold on glassy carbon substrate for controlling cell behavior[J]. Advanced Materials Interfaces, 2020, 11(7): 2000238.
[7] HOFFMANN R D, PÖTTGEN R, GREGORY A, et al. Synthesis, structure, chemical bonding, and properties of CaTIn2(T?=?Pd, Pt, Au)[J]. Ztschrift Für Anorganische Und Allgemne Chemie, 2015, 625(5): 789-798.
[8] HEYING B, KÖSTERS, JUTTA, PÖTTGEN R. Sr4Pt10In21-the first representative of the Ho4Ni10In21 type with a divalent cation[J]. Zeitschrift Für Naturforschung B, 2019, 74(5): 443.
[9] MASAI H, YANAGIDA T.Photoluminescence of ns2-type center-containing zinc borate glasses[J]. Journal of Non Crystalline Solids, 2016(431): 83-87.
[10] SONG E, ZHAO H Y, LI S, et al.Metal oxide electrolytic reduction using glassy carbon as anode[J]. Transactions of the American Nuclear Society, 2016, 114(Jun.): 194-194.
[11] HOFFMANN R D, POTTGEN R.Distorted bcc indium cubes as structural motifs in Ca[J]. Chemistry (Weinheim an Der Bergstrasse, Germany), 2000, 6(4): 600-607.
[12] BERTHEBAUD D, GASCOIN F.Microwaved assisted fast synthesis of n and p-doped Mg2Si[J]. Journal of Solid State Chemistry, 2013(202): 61-64.
[13] 马晓霞, 范红, 李守生, 等. 蒸发金和芯片表层黑色颗粒分析[J]. 黄金, 2015, 36(11): 4-6.
[14] 李云海, 张益平, 章文. 电子束蒸发工艺中源飞溅的控制[J]. 电子与封装, 2013(6): 7-9.
[15] 付学成, 王英, 权雪玲,等. 电子束蒸镀金膜表面黑色颗粒形成的机理研究[J]. 真空科学与技术学报, 2019, 39(5): 396-400.
[16] 付学成, 权雪玲, 刘民, 等. 钨坩埚蒸镀金膜表面黑色颗粒的控制研究[J]. 真空科学与技术学报, 2018, 38(2): 113-116.
[17] 张以忱. 真空镀膜设备[M]. 北京: 冶金工业出版社,2009: 113-114.
[18] 方应翠, 沈杰, 解志强, 等. 真空镀膜原理与技术[M]. 北京: 科学出版社, 2014: 38-39.
[19] 杨津基. 气体放电[M]. 北京:科学出版社,1983:49-50.
[20] 张晓燕, 冯翠菊. 均匀带电半球面底面上的电场与电势[J]. 河南师范大学学报(自然科学版), 2010, 38(3): 183-185.
[21] 刘秦勇. 静电场中电场强度的计算方法[J]. 当代电大, 2003(增刊1): 63-65.
[1] HE Ping, ZHANG Xu, YANG yang. Study on Magnetron Sputtering Film Process on Inner Wall of Cylinder with Different Matrix Materials [J]. VACUUM, 2021, 58(6): 33-37.
[2] DUAN Shan-Shan, SHI Chang-yong, YANG Li-Zhen, LIU Zhong-wei, ZHANG Hai-bao, CHEN Qiang. The Recent Development and Future of Atomic Layer Deposition of Alumina Thin Films [J]. VACUUM, 2021, 58(6): 13-20.
[3] ZHU Bei-bei, NI Chang, QIN Lin, CHU Jian-ning, CHEN Xiao, XU Jian-feng. Nano Film Deposition Technology Based on Magnetron Sputtering [J]. VACUUM, 2021, 58(6): 21-26.
[4] YANG Zhao, LUO Jun-yao, LI Bao-chang, LI Shu-hua, TA Shi-wo, FU Zhen-xiao, NING Hong-long. Effect of Metallic Multilayer Films on Gold Wire Bonding Properties [J]. VACUUM, 2021, 58(6): 43-47.
[5] ZHANG Yi-chen. No. 21:Vacuum Roll-to-Roll Coating [J]. VACUUM, 2021, 58(6): 86-88.
[6] CHEN QIAN, YANG Li-zhen, LIU Zhong-Wei, ZHANG Hai-bao, CHEN Qiang. Present Situation and Development of Nano Films Deposited by Molecular Layer Deposition [J]. VACUUM, 2021, 58(5): 26-31.
[7] YOU Jin-shan. SIS Design and Application for Vacuum Coating Equipment [J]. VACUUM, 2021, 58(5): 80-84.
[8] WEI Meng-yao, WANG Hui, HAN Wen-fang, WANG Hong-li, SU Yi-fan, TANG Chun-mei, DAI Ming-jiang, SHI Qian. Study on Electrochromic Properties of Tungsten Oxide Films Deposited by Medium Frequency Magnetron Sputtering [J]. VACUUM, 2021, 58(5): 50-56.
[9] ZHANG Xiao-xia, DENG Jin-xiang, KONG Le, LI Rui-dong, YANG Zi-shu, ZHANG Jie. Preparation and Study of Si-doped β-Ga2O3 Thin Films with Different Content [J]. VACUUM, 2021, 58(5): 57-61.
[10] WU Zhong-ju, BAI Xiao, CHENG Yang-yang, ZHOU She-zhu. Preparation and Characterization of SiC Coating on Isostatic Pressing Formed Graphite Surface [J]. VACUUM, 2021, 58(5): 62-65.
[11] FENG Jie, CHENG Rong, ZHAO Yong, WANG Yan-long, WANG Shang-min, ZHANG Hong, JIA Yan-hui. FFT Analysis of Discharge Oscillations of Plasma Contactor [J]. VACUUM, 2021, 58(5): 72-76.
[12] . [J]. VACUUM, 2021, 58(5): 110-112.
[13] LI Jian-peng, ZHANG Chi, LI Jian-chang. Latest Studies on Fatigue Failure of Flexible Electronic Devices [J]. VACUUM, 2021, 58(5): 11-15.
[14] FU Xue-cheng, XU Jin-bin, WU Li-ying, HUANG Sheng-li, WANG Ying. Study on Uniformity of Inclined Magnetron Sputtering with Small Circular Plane Target [J]. VACUUM, 2021, 58(4): 1-5.
[15] JI Jian-chao, YAN Yue, HA En-hua. Study Progress of AZO Films by Sol-gel Methods [J]. VACUUM, 2021, 58(4): 30-35.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!