VACUUM ›› 2025, Vol. 62 ›› Issue (5): 17-22.doi: 10.13385/j.cnki.vacuum.2025.05.03
• Measurement and Control • Previous Articles Next Articles
TAN Biao1,2, YU Jiebing1,2,3, WANG Pengcheng1,2,4, LI Yanmin5, LIU Jiaming1,2, LIU Shunming1,2, GUAN Yuhui1,2, SUN Xiaoyang1,2, WANG Yigang1,2, ZHU Bangle1,2
CLC Number: TB79;TB741
| [1] TERUI S, ISHIBASHI T, ABE T, et al.Development of low-Z collimator for SuperKEKB[C]//Proceedings of IPAC2021. Campinas, 2021:3537-3540. [2] DALLOCCHIO A, BERTARELLI A, ARNAU IZQUIERDO G, et al.Advanced materials for future phase II LHC collimators[C]//Proceedings of PAC09. Vancouver, 2009:2814-2816. [3] GIL C S, KIM J H, KIM D H, et al.Beam dump development for a Korean proton accelerator[C]// Proceedings of HB2010. Morschach, 2010:563-566. [4] WARSOP C M.Beam loss control on the ISIS synchrotron: simulations, measurements, upgrades[C]// AIP Conference Proceedings. 2003, 693:154-157. [5] SIMOS N, CONOR J O, HURH P, et al.Long baseline neutrino experiment target material radiation damage studies using energetic protons of the Brookhaven linear isotope production(BLIP) facility[C]//Proceedings of HB2012. Beijing, 2012:471-475. [6] TANG J Y, CHEN J F, ZOU Y.Combined momentum collimation studies in a high-intensity rapid cycling proton synchrotron[J].Physical Review Special Topics: Accelerators and Beams, 2011, 14(5):050103. [7] SMITH H V, ADAMS D J, JONES B, et al.Activation models of the ISIS collectors[C]//Proceedings of IPAC2014. Dresden, 2014:893-895. [8] STADLMANN J, BOYZK L, KOLLMUS H, et al.Collimation and material science studies (ColMat) at GSI[C]// Proceedings of IPAC2010. Kyoto, 2010:4241-4242. [9] REDAELLI S.Do we really need a collimator upgrade?[C]//Proceedings of Chamonix 2012 workshop on LHC performance. Chamonix, 2012:352-356. [10] YANG J Q, ZOU Y, TANG J Y.Collimation method studies for next-generation hadron colliders[J].Physical Review Accelerators and Beams, 2019, 22(2):023002. [11] 杨建权. 超级质子对撞机SPPC束流准直方法的研究[D].北京:中国科学院大学,2019. [12] QUARANTA E, BRUCE R, MEREGHETTI A, et al.Collimation cleaning at the LHC with advanced secondary collimator materials[C]//Proceedings of IPAC2015. Kyoto, 2015:4241-4242. [13] MACIARIELLO F L, NUIRY F X, FOLCH R.et al.High intensity beam test of low Z materials for the upgrade of SPS-to-LHC transfer line collimators and LHC injection absorbers[C]//Proceedings of IPAC2016. Busan, 2016: 1218-1221. [14] MARIANI N.Development of novel, advanced molybdenum-based composites for high energy physics applications[D]. Milan: Politecnico di Milano, 2014. [15] GUARDIA-VALENZUELA J, BERTARELLI A, CARRA F, et al.Development and properties of high thermal conductivity molybdenum carbide-graphite composites[J]. Carbon, 2018, 135:72-84. [16] SIMOS N, CHARITONIDIS N, SIMON P, et al.Proton irradiation effects in molybdenum-carbide-graphite composites[J]. Journal of Nuclear Materials, 2021, 553:153049. [17] ACCETTURA C, BEGHI M, BERTARELLI A, et al.Ultra-high vacuum characterization of molybdenum-carbide graphite for HL-LHC collimators[C]//Proceedings of IPAC2019. Melbourne, 2019:1078-1081. [18] BERTARELLI A.Novel materials for collimators at LHC and its upgrades[R].Lansing: HB2014 WorkshopEast, 2014. [19] BERTARELLI A, ARNAU IZQUIERDO G, CARRA F, et al.Research and development of novel advanced materials for next-generation collimators[C]//Proceedings of IPAC2011. San Sebastian, 2011:2888-2890. [20] SACROSTAN DE FRUTOS O, BERTARELLI A, BIANCHI L, et al. Thermo-physical and mechanical characterisation of novel materials under development for HL-LHC beam intercepting devices[C]//Proceedings of IPAC2017. Copenhagen, 2017: 3536-3539. [21] KAMIYA J, BAGLIN V, BREGLIOZZI G, et al.Outgassing measurement of an LHC collimator and estimation for the NEG performances[J]. Vacuum, 2011, 85:1178-1181. [22] BERTARELLI A, BERTHOME E, BOCCONE V, et al.An experiment to test advanced materials impacted by intense proton pulse at CERN HiRadMat facility[J]. Nuclear Instruments and Methods in Physics Research B, 2013, 308:88-99. [23] 张海丰,崔倩月,郝俊杰, 等. 高导热低二次电子发射系数石墨/铜复合材料[J].真空电子技术,2021(5):37-40. [24] 张俊龙,陈亚军,李晨, 等. 石墨含量对铜基石墨自润滑复合材料摩擦过程中石墨润滑膜的影响[J].轴承,2022(2):31-34. [25] 张铭君,刘培,宋帅, 等. 制备工艺参数对超大颗粒石墨/铜基复合材料结构及相对密度的影响[J].中国有色金属学报,2022,32(2):406-415. [26] 赵籍九,尹兆升. 粒子加速器技术[M]. 北京:高等教育出版社, 2006: 239. [27] 董海义,宋洪,李琦, 等. 中国散裂中子源(CSNS)真空系统研制[J].真空, 2015,52(4):1-6. [28] An Mey S.Thermodynamic re-evaliation of the Cu-Ni system[J]. CALPHAD, 1992, 16(3): 255-260. [29] 熊伟. Ni合金相图、相平衡及相变的热力学研究[D]. 长沙:中南大学, 2010. [30] WANG J, LIU C, LEINENBACH C, et al.Experimental investigation and thermodynamic assessment of the Cu-Sn-Ti ternary system[J]. Computer Coupling of Phase Diagrams and Thermochemistry, 2011, 35:82-94. [31] 杨华扣. Cu-Ti、Co-Ti和Cu-Co-Ti体系的相图热力学研究[D]. 赣州:江西理工大学,2024. [32] YU J B, KANG L, LI Y, et al.Exploration of the applications of graphite/copper composites in accelerators[J].Radiation Detection Technology and Methods, 2025, 9:51-60. [33] 关玉慧,宋洪,董海义,等.常见放气率测试方法的量化比较[J].真空科学与技术学报,2020,40(6):524-530. [34] 龙文元,熊伟,尧军平.等离子烧结制备CNTs增强Nb/Nb5Si3复合材料[J].特种铸造及有色合金,2015,35(2):119-123. [35] 王玉金,崔磊,贾德昌,等. 反应热压烧结BN-ZrB2-ZrO2复合材料的显微组织与力学性能[J].稀有金属材料与工程, 2009, 38(增刊2):470-474. |
| [1] | MAO Xin, FENG Si-qing, LIU Peng, PENG Xue-bing, WU Huan. Test of Outgassing Rates of Threaded Fasteners with Copper Anti-seize Coating [J]. VACUUM, 2024, 61(4): 80-84. |
| [2] | ZHANG Hong-bo, QU Tian-liang, WANG Peng. High Vacuum Maintaining Technology for Hemispherical Resonator Gyro [J]. VACUUM, 2023, 60(4): 75-79. |
| [3] | WANG Jing-zhe, ZHOU Fei-ge, FENG Hui-hua. Experimental Study on the Vacuum Outgassing Rate of FRP and Multilayer Insulation Materials [J]. VACUUM, 2023, 60(4): 65-68. |
| [4] | LI Jin-ming, WANG Jin-wei, LIU Jun-nan, CHEN Ming. High-precision Measurement Device for Outgassing Rate of Vacuum Materials [J]. VACUUM, 2023, 60(4): 60-64. |
| [5] | YU Kang-yuan, HE Yu-dan, YANG Bo, LUO Jiang-shan. Effect of Sputtering Voltage on Microstructure and Properties of Cu Foils Deposited by High Power Impulse Magnetron Sputtering [J]. VACUUM, 2023, 60(3): 1-4. |
| [6] | LU Shao-bo, YAO Zheng, SONG Yan-peng, HAN Yong-chao, ZHANG Ji-feng, TANG Rong. Development of XHV System for Customized Vacuum Exhaust Process for Space TWTs [J]. VACUUM, 2022, 59(5): 50-54. |
| [7] | ZHOU Jun, CAO Zeng, CAO Cheng-zhi, HUANG Xiang-mei, GAO Xiao-yan, HU Yi. Preliminary Results of Mass Spectrometry Measurements for HL-2M Tokamak [J]. VACUUM, 2022, 59(3): 68-73. |
| [8] | HUANG Fan, LI Bin, LIU Yi-qun, CAO Hui. Influence of Paper Barcode on Helium Leak Detection Output of the Fuel Rod and Solution [J]. VACUUM, 2021, 58(5): 89-92. |
| [9] | LI Xiao-feng, HUANG Qiang-hua, CHEN Guang-qi, HE Xiao-dong, ZHU Ming. Simulated Experimental Study on Vacuum Life of Cryogenic Insulated Cylinders [J]. VACUUM, 2020, 57(1): 56-61. |
| [10] | LIU Shun-ming, SONG Hong, DONG Hai-yi, GUAN Yu-hui, LIU Sheng-hua. Applications of quadrupole mass spectrometer in drift tube linear accelerator [J]. VACUUM, 2018, 55(6): 5-9. |
|