欢迎访问沈阳真空杂志社 Email Alert    RSS服务

真空 ›› 2019, Vol. 56 ›› Issue (6): 30-35.doi: 10.13385/j.cnki.vacuum.2019.06.06

• • 上一篇    下一篇

强稳定性超疏水F-DLC涂层的制备与性能研究*

吴忠灿, 刘亮亮, 唐伟, 杨超, 马正永   

  1. 北京大学深圳研究生院新材料学院,深圳 518055
  • 收稿日期:2019-08-19 出版日期:2019-11-25 发布日期:2019-12-03
  • 通讯作者: 马正永,高级工程师。
  • 作者简介:吴忠灿(1988 - ),男,广东省深圳市人,工程师。
  • 基金资助:
    国家材料基因组计划(2016YFB0700600); 深圳市科技计划自由探索项目 (JCYJ20170818150601930)

Fabrication and Properties of Robust Superhydrophobic F-DLC Coatings

WU Zhong-can, LIU Liang-liang, TANG Wei; YANG Chao, MA Zheng-yong   

  1. School of Advanced Materials, Shenzhen Graduate School, Peking University, Shenzhen 518055, China
  • Received:2019-08-19 Online:2019-11-25 Published:2019-12-03

摘要: 超疏水表面由于其特殊的浸润性,在自清洁、防结冰、水中减阻等领域具有重要的应用价值,受到了研究者的广泛关注。但是超疏水性能的实现大多需要低表面能的有机材料修饰,因此其耐高温、抗老化及耐磨等方面的性能较差,无法满足长寿命的工程应用。本文通过激光刻蚀在不锈钢基底上进行表面织构化,在此基础上沉积了掺氟的类金刚石涂层(F-DLC),实现了其对水滴高达152°的接触角,并研究了其抗老化、耐高温及耐磨损等方面的性能。结果表明制备的超疏水涂层在日照120天及350℃以下高温环境下均能保持150°以上的疏水角,在与304不锈钢对磨20000次后仍可保持130°以上的接触角,说明该涂层具有极佳的抗老化、耐高温及耐磨稳定性,在航空航天、海洋装备等领域具有广泛的应用前景。

关键词: 超疏水, 激光处理, F-DLC, 耐磨性, 稳定性

Abstract: Superhydrophobic surfaces have possible crucial applications in self-cleaning, anti-icing and water drag reduction in water due to its unique wetting properties, which thus become eye-catching in recent years. However, most superhydrophobic surfaces are achieved by modification of organic materials with small surface energy, resulting in poor performances at high temperature, aging and tribology fields. In this paper, we present a robust superhydrophobic surface constructed by a special surface texture and a F-DLC modification layer. It realizes a water contact angle (WCA) of 152°, and the high temperature resistance, aging resistance and wear resistance are studied. The results show that the coating maintains the superhydrophobic properties after exposing to sunlight of 120 days and high temperature up to 350 ℃. After the wear testing against to 304 stainless steel for 20000 cycles, a high WCA more than 130° can still be obtained. The results suggest that the coating shows excellent robustness in high temperature, aging and wear, which promises the durable applications in aerospace, marine equipment and other engineering fields.

Key words: superhydrophobic, laser etching, F-DLC, wear resistance, stability

中图分类号: 

  • TG174.453
[1] 江雷. 从自然到仿生的超疏水纳米界面材料[J]. 科技导报, 23(0502).
[2] Nimittrakoolchai O U, Supothina S.Deposition of organic-based superhydrophobic films for anti-adhesion and self-cleaning applications[J]. Journal of the European Ceramic Society, 2008,28(5):947-952.
[3] Lu Y, Sathasivam S, Song J, et al.Creating superhydrophobic mild steel surfaces for water proofing and oil-water separation[J]. Journal of Materials Chemistry A, 2014,2(30):11628-11634.
[4] Brennan J C, Geraldi N R, Morris R H, et al.Flexible conformable hydrophobized surfaces for turbulent flow drag reduction[J]. Scientific Reports, 2015,5:10267.
[5] Wu W, Wang X, Wang D, et al.Alumina nanowire forests via unconventional anodization and super-repellency plus low adhesion to diverse liquids[J]. Chemical Communications, 2009,9(9):1043-1045.
[6] Chen F, Zhang D, Yang Q, et al.Anisotropic wetting on microstrips surface fabricated by femtosecond laser[J]. Langmuir the Acs Journal of Surfaces & Colloids, 2011, 27(1):359-365.
[7] Bhushan B, Her E K.Fabrication of Superhydrophobic Surfaces with High and Low Adhesion Inspired from Rose Petal[J]. Langmuir the Acs Journal of Surfaces & Colloids, 2010, 26(11):8207-8217.
[8] Lei Zhai, Fevzi. Cebeci, Robert E. Cohen, et al. Stable Superhydrophobic Coatings from Polyelectrolyte Multilayers[J]. Nano Letters, 2004, 4(7):1349-1353.
[9] 王晶, 史雪婷, 冯利邦, 等. 长效超疏水铜表面的构建及耐磨性和自清洁性能[J]. 材料导报, 2018,32(24):107-111.
[10] 屈孟男, 侯琳刚, 何金梅,等. 功能化超疏水材料的研究与发展[J]. 化学进展, 2016, 28(12):1774-1787.
[11] Cao Z, Xiao D, Kang L, et al.Superhydrophobic pure silver surface with flower-like structures by a facile galvanic exchange reaction with [Ag(NH3)2]OH.[J]. Chemical Communications, 2008, 23(23):2692-2694.
[12] Gu C, Tu J.One-step fabrication of nanostructured Ni film with lotus effect from deep eutectic solvent[J]. Langmuir the Acs Journal of Surfaces & Colloids, 2011, 27(16):10132.
[13] Qu M, Liu S, He J, et al.Fabrication of recyclable and durable superhydrophobic materials with wear/corrosion-resistance properties from kaolin and polyvinylchloride[J]. Applied Surface Science, 2017,410:299-307.
[14] Chu Q W, Liang J, Hao J C.Facile fabrication of a robust super-hydrophobic surface on magnesium alloy[J]. Colloids & Surfaces A Physicochemical & Engineering Aspects, 2014,443(Complete):118-122.
[15] Nine M J, Cole M A, Johnson L, et al.Robust Superhydrophobic Graphene-Based Composite Coatings with Self-Cleaning and Corrosion Barrier Properties[J]. Acs Applied Materials & Interfaces, 2015,7(51):28482.
[16] Nakamatsu K I, Yamada N, Kanda K, et al.Fluorinated Diamond-Like Carbon Coating as Antisticking Layer on Nanoimprint Mold[J]. Japanese Journal of Applied Physics, 2006,45(35):L954-L956.
[17] Fluorinated diamond-like carbon as antithrombogenic coating for blood-contacting devices[J]. Journal of Biomedical Materials Research Part A, 2010,76A(1):86-94.
[18] 朱丽, 江美福, 宁兆元, 等. 不同射频输入功率下制备的氟化类金刚石碳膜疏水性研究[J]. 物理学报, 2009(9).
[19] 刘雄飞, 张德恒, 齐海兵. F-DLC疏水性能的研究[J]. 微细加工技术, 2006(6):32-35.
[20] Liu L, Wu Z, An X, et al.Excellent adhered thick diamond-like carbon coatings by optimizing hetero-interfaces with sequential highly energetic Cr and C ion treatment[J]. Journal of Alloys and Compounds, 2017:S0925838817338033.
[21] Jiang A, Xiao J, Li X, et al.Effect of Structure, Composition, and Micromorphology on the Hydrophobic Property of F-DLC Film[J].Journal of Nanomaterials,2013:1-7.
[22] Tabbal M, Chaker M, Khakani M A E, et al. Effect of laser intensity on the microstructural and mechanical properties of pulsed laser deposited diamond-like-carbon thin films[J]. Journal of Applied Physics, 1999,(85):3860-3865.
[23] Jayatissa A H, Sato F, Saito N, et al.Characterization of diamond-like carbon clusters deposited by pulsed ArF laser deposition[J]. Carbon,2000,38(8):1145-1151.
[24] Jelínek M, Smetana K, Kocourek T, et al.Luxbacher, Biocompatibility and sp3/sp2 ratio of laser created DLC films[J]. Materials Science and Engineering: B, 2010,169(1-3):89-93.
[25] Ferrari A C, Robertson J.Resonant Raman spectroscopy of disordered, amorphous, and diamondlike carbon[J]. Physical Review B Condensed Matter, 2001,64(7):075414.
[26] Tuinstra F, Koenig J L.Raman Spectrum of Graphite[J]. Journal of Chemical Physics, 1970,53(3):1126-1130.
[27] Leyland A, Matthews A.On the significance of the H/E ratio in wear control: a nanocomposite coating approach to optimised tribological behaviour[J]. Wear, 2000, 246(1):1-11.
[28] Hensel R, Helbig R, Aland S, et al.Wetting resistance at its topographical limit: the benefit of mushroom and serif T structures.[J]. Langmuir the Acs Journal of Surfaces & Colloids, 2013, 29(4):1100-1112.
[29] Liu T L, Kim C J.Repellent surfaces. Turning a surface superrepellent even to completely wetting liquids[J]. Science, 2014, 346(6213):1096-1100.
[30] Shaha K P, Pei Y T, Martinezmartinez D, et al.Influence of hardness and roughness on the tribological performance of TiC/a-C nanocomposite coatings[J]. Surface & Coatings Technology, 2010, 205(7):2624-2632.
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李得天, 成永军, 张虎忠, 孙雯君, 王永军, 孙 健, 李 刚, 裴晓强. 碳纳米管场发射阴极制备及其应用研究[J]. 真空, 2018, 55(5): 1 -9 .
[2] 周彬彬, 张 建, 何剑锋, 董长昆. 基于 CVD 直接生长法的碳纳米管场发射阴极[J]. 真空, 2018, 55(5): 10 -14 .
[3] 李志胜. 空间环境下超大型红外定标用辐射屏蔽门的研制[J]. 真空, 2018, 55(5): 66 -70 .
[4] 郑 列, 李 宏. 200kV/2mA 连续可调直流高压发生器的设计[J]. 真空, 2018, 55(6): 10 -13 .
[5] 柴晓彤, 汪 亮, 王永庆, 刘明昆, 刘星洲, 干蜀毅. 基于 STM32F103 单片机的单泵运行参数数据采集系统[J]. 真空, 2018, 55(5): 15 -18 .
[6] 孙立志, 闫荣鑫, 李天野, 贾瑞金, 李 征, 孙立臣, 王 勇, 王 健, 张 强. 放样氙气在大型收集室内分布规律研究[J]. 真空, 2018, 55(5): 38 -41 .
[7] 黄 思 , 王学谦 , 莫宇石 , 张展发 , 应 冰 . 液环压缩机性能相似定律的实验研究[J]. 真空, 2018, 55(5): 42 -45 .
[8] 纪 明, 孙 亮, 杨敏勃. 一种用于对月球样品自动密封锁紧的设计[J]. 真空, 2018, 55(6): 24 -27 .
[9] 李民久, 熊 涛, 姜亚南, 贺岩斌, 陈庆川. 基于双管正激式变换器的金属表面去毛刺 20kV 高压脉冲电源[J]. 真空, 2018, 55(5): 19 -24 .
[10] 刘燕文, 孟宪展, 田 宏, 李 芬, 石文奇, 朱 虹, 谷 兵, 王小霞 . 空间行波管极高真空的获得与测量[J]. 真空, 2018, 55(5): 25 -28 .