欢迎访问沈阳真空杂志社 Email Alert    RSS服务

真空 ›› 2019, Vol. 56 ›› Issue (6): 43-48.doi: 10.13385/j.cnki.vacuum.2019.06.08

• • 上一篇    下一篇

电磁悬浮真空熔铸技术进展

宋青竹, 董辉3, 鄂东梅1, 王玲玲2, 张宁4, 乔忠路4   

  1. 1.沈阳真空技术研究所有限公司,辽宁 沈阳 110042;
    2.全国真空技术标准化技术委员会,辽宁 沈阳 110042;
    3.安捷伦科技(中国)有限公司,上海 200080;
    4.沈阳汇真真空技术有限公司,辽宁 沈阳 110042
  • 收稿日期:2019-05-12 出版日期:2019-11-25 发布日期:2019-12-03
  • 作者简介:宋青竹,男,辽宁省铁岭市人,硕士。
  • 基金资助:
    沈阳市双百工程项目(Z17-5-048)

Development of Electromagnetic Levitation Vacuum Melting Casting Technology

SONG Qing-zhu1,2, DONG Hui3, E Dong-mei1, WANG Ling-ling2, ZHANG Ning4, QIAO Zhong-lu4   

  1. 1.Shenyang Vacuum Technology Institute Co., Ltd., Shenyang 110042, China;
    2.SAC/TC18, Shenyang 110042,China;
    3.Agilent Technologies (China) Co., Ltd., Shanghai 200080, China;
    4.Shenyang Huizhen Vacuum Technology Co., Ltd., Shenyang 110042, China;
  • Received:2019-05-12 Online:2019-11-25 Published:2019-12-03

摘要: 介绍了电磁线圈悬浮ELM,冷坩埚悬浮CCLM,冷坩埚半悬浮熔炼semi-CCLM——即感应凝壳熔炼ISM,三类真空熔铸技术的发展和现状。对该类技术在精密铸造、材料提纯、锭材及合金制备、气雾化制粉四个领域的应用进行实例论述。指明悬浮熔炼技术在材料种类、设备容量、熔体过热度及运行工艺几个方面的发展趋势。随着水冷铜坩埚技术的发展,半悬浮熔炼技术得到较快发展,并演化出多种形式,促进新型材料研制。激光和等离子加热技术的融合,为新工艺的实施奠定了基础。

关键词: 电磁悬浮, 悬浮熔炼, 冷坩埚悬浮熔炼, 感应凝壳炉, 钛合金精密铸造

Abstract: This paper introduces the development and current situation of electromagnetic coils levitation melting ELM, cold crucible levitation melting CCLM, cold crucible semi-levitation melting semi- CCLM which is induction skull melting ISM, three types of vacuum melting casting technology. The application of this kind of technology in precision casting, material purification, ingot material and alloy preparation, gas atomization powder were discussed. The development trend of levitation melting technology in material type, equipment capacity, superheat of melt and operation process is indicated. With the development of water-cooled copper crucible technology, semi-levitation melting technology developed rapidly and evolved into various forms, which promoted the development of new materials. The fusion of laser and plasma heating technology has laid a foundation for the implementation of the new technology.

Key words: electromagnetic levitation, levitation melting, CCLM, ISM, titanium alloy investment casting

中图分类号: 

  • TF13
[1] 宋青竹,张哲魁,孙足来,等. 冷坩埚技术进展[J].真空,2014,51(4):58-62.
[2] Okumura T, Yamamoto K, Shibata M. Large scale cold crucible levitation melting furnace with bottom taping nozzle[C].Proceeding of the 6th International conference. Electromagnetic Proceeding of Materials EMP2009,Oct.19-23,2009,Dresden,Germany, 521-524.
[3] Saito K, Okumura T, Yamamoto K. Large Scale cold crucible levitation melting furnace for titanium[C]. Proceeding of the 8th International Conference on Electromagnetic Processing of Materials EPM2015,Oct2015, Cannes, France.
[4] 朱知寿. 新型航空高性能钛合金材料技术研究与发展[M]. 北京:航空工业出版社, 2013:1-41.
[5] Cotton J D, Clark L P, Phelps H R.Titanium alloys on the F-22 fighter airframe[J]. Advanced Materials and Processes.2002,160(5):25-29.
[6] Phelps H, Cotton J.A Review of Titanium Casting Development for the F-22 Raptor[R], The Aeromat Conference,Charlotte,NC,June, 2012:18-20.
[7] Branscomb T. Shell Materials and Casting Methods for Casting Titanium Alloys with Minimun Alpha Case[R]. The Conference of Titanium2015, October 4-7,2015, Orlando,FL, USA.
[8] Melissa Allen Volker Güther.Production of TiAl alloys[R]. Titanium Europe2018, May 14th-16th , 2018, Sevilla, Spain.
[9] Spitans S, Franz H, Baake E, et al. Large-scale levitation melting and casting of titanium alloys[C]. VШ International Scientific Colloquium,Modelling for Materials Processing, Riga,Sep.2017,21-22,59-66.
[10] 只野英顕. 浮揚溶解装置(CCLM)の進展[J].富士时报(FUJI ELECTRIC JOURNAL),1998,71(5),259-263.
[11] 篠倉恒樹, 武達男浮揚溶解装置(CCLM)の特長と溶解実績[J].富士时报(FUJI ELECTRIC JOURNAL),1998,71(5):264-267.
[12] Osono H, Maeta H, Matsusaka K, et al.Preparation of Highly Perfect Aluminum Crystal by Cold-Crucible Induction Melting in Ultra-high Vacuum. Materials Transactions[J]. Special Issue on Ultra-High Purity Metals(Ⅱ), 2002,43(2):121-124.
[13] Bojarevics V, Pericleous K.Dynamic melting model for small samples in cold crucible[J]. The International Journal for Computation and Mathematics in Electrical and Electronic Engineering,2008,27(2):350-358.
[14] Sheiko I V, Shapovalov V A, Yakusha V V, et al.Cooled moulds for ingots formation with electromagnetic effect on melt[J].SOVREM ENNAYA ELEKTRO-METALLURGIYA (Electrometallurgy Today), 2011,4(105):14-19.
[15] Protokovilov I.V. MHD technologies in metallurgy (Review)[J].SOVREM ENNAYA ELEKTRO- METALLURGIYA (Electrometallurgy Today), 2011, 4(105):32-41.
[16] Robert E.Haun. Advances in the Systems and Processes for the Production of Gamma Titanium Aluminide Bars and Powder[J].The Minerals,Metals & Materials Society. JOM ,2017,69(12):2615-2620.
[17] Sugilal G, Jha J, Rao M H, et al.Indigenous development of induction skull melting technology for electromagnetic processing of refractory and reactive metals and alloys[J].Materials Today:Proceeding 2016,(3):2942-2950.
[18] Morita A, Fukui H, Tadano H, et al.Alloying titanium and tantalum by cold crucible levitation melting (CCLM)furnace[J]. Materials Science and Engineering, A280(2000):208-213.
[19] 刘丽君张生栋郄东生等.冷坩埚玻璃固化技术研究进展[J].中国原子能科学研究院年报,2017:39-40.
[20] Roach J A, Lopukh D B, Martynov A P, et al. Advanced Modeling of Cold Crucible Induction Melting for Process Control and Optimization-8359[C]. WM2008 Conference, February 24-28,2008,Phoenix, AZ.
[21] Yolton C F, Eylon D. Effects of Proceeding and Heat Treatment on Microstructure and Mechanical Properties of Gamma Titanium Aluminde Powder Compacts[C]. TITANIUM’92 SCIENCE AND TECHNOLOGY VOLUMEⅡ Proceedings of a Symposium sponsored by the Titanium Committee of the Minerals, Metals & Materials Structural Metals Division. Held at the Seventh World Titanium Conference June 29-July 2,1992 in San Diego, California.
[22] Heidloff A, Rieken J, Medina F.Fabrication of titanium aluminide components by high pressure gas atomization and subsequent EBM additive manufacturing[R].Titanium Europe 2017,May. 17-19,Amsterdam The Netherlands,2017.
[23] Schade C, Murphy T, Bernhard G.Titanium alloy development for AM utilizing gas atomization[R].https://www.gknpm.com/globalassets/downloads/hoeganaes/technical-library/technical-papers/am/schade-titanium-alloy-development-for-am-utilizing-gas-atomization.pdf.
[24] Abbas S F, Lee S, Lee B, et al. Synthesis Of Titanium Powder With Cold Crucible Based Induction Skull Melting Gas Atomization For Additive Manufacturing[R].: European Powder Metallurgy Association (Euro PM2018 Congress and Exhibition) Oct.2018, Bilbao, Spain.
[25] Harding R, Wickins M, Keough G, et al.The Use of Combined DC and AC Fields to Increase Superheat in an Induction Skull Melting Furnace. LMPC,2005.
[26] Pericleous K, Bojaverics V, Djambazov G, et al.Experimental and numerical study of the cold crucible melting process.Applied Mathematical Modelling[J] ,30(2006):1262-1280.
[27] Dumont M, Ernst R,Fautrelle Y, et al. Electromagnetic Processing from AC to DC field and Multiphysics Modeling: a Way for Process Innovation. Proceedings of the2015 COMSOL Conferenc in Grenoble,France.
[28] OCAS. [EB/OL].[2019-05-08]. https://www.ocas.be/equiment/#/casting-cold-crucible-levitation-melter.
[1] 田国利, 孟宇, 张华霞, 万旭杰. 真空精炼时间对FGH96粉末高温合金氧含量的影响[J]. 真空, 0, (): 75-77.
[2] 姜彩伟, 刘建民, 胡显军. 真空感应炉冶炼铁铬铝合金铸锭常见缺陷成因分析及改善措施[J]. 真空, 2019, 56(2): 74-77.
[3] 李忠仁, 明 悦, 朱一鸣. 电阻加热真空高温石墨化炉的功率计算[J]. 真空, 2018, 55(6): 73-75.
[4] 段永利, 邓文宇, 齐丽君, 刘 坤, 孙宝玉, 王 庆. 金属 Tb 晶界扩散对烧结钕铁硼磁性和耐温性的影响[J]. 真空, 2018, 55(6): 76-79.
[5] 宋青竹, 张哲魁, 孙足来, 鄂东梅. 大型钛合金熔铸技术——真空电弧凝壳精铸设备进展[J]. 真空, 2018, 55(5): 58-61.
[6] 张志平. 电子束熔炼炉连铸系统设计[J]. 真空, 2019, 56(4): 40-43.
[7] ВВ.А.ШАПОВАЛОВ, 许小海, 汪源, 孙足来, 宋青竹, 李建军. 等离子体技术在冶炼和铸造生产中的应用*[J]. 真空, 2019, 56(5): 1-5.
[8] 王智荣, 马强, 龙国梁, 李雪峰, 刘成. 多室隧道连续式真空烧结炉及热处理炉的研制与应用*[J]. 真空, 2019, 56(5): 6-11.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李得天, 成永军, 张虎忠, 孙雯君, 王永军, 孙 健, 李 刚, 裴晓强. 碳纳米管场发射阴极制备及其应用研究[J]. 真空, 2018, 55(5): 1 -9 .
[2] 周彬彬, 张 建, 何剑锋, 董长昆. 基于 CVD 直接生长法的碳纳米管场发射阴极[J]. 真空, 2018, 55(5): 10 -14 .
[3] 李志胜. 空间环境下超大型红外定标用辐射屏蔽门的研制[J]. 真空, 2018, 55(5): 66 -70 .
[4] 郑 列, 李 宏. 200kV/2mA 连续可调直流高压发生器的设计[J]. 真空, 2018, 55(6): 10 -13 .
[5] 柴晓彤, 汪 亮, 王永庆, 刘明昆, 刘星洲, 干蜀毅. 基于 STM32F103 单片机的单泵运行参数数据采集系统[J]. 真空, 2018, 55(5): 15 -18 .
[6] 孙立志, 闫荣鑫, 李天野, 贾瑞金, 李 征, 孙立臣, 王 勇, 王 健, 张 强. 放样氙气在大型收集室内分布规律研究[J]. 真空, 2018, 55(5): 38 -41 .
[7] 黄 思 , 王学谦 , 莫宇石 , 张展发 , 应 冰 . 液环压缩机性能相似定律的实验研究[J]. 真空, 2018, 55(5): 42 -45 .
[8] 纪 明, 孙 亮, 杨敏勃. 一种用于对月球样品自动密封锁紧的设计[J]. 真空, 2018, 55(6): 24 -27 .
[9] 李民久, 熊 涛, 姜亚南, 贺岩斌, 陈庆川. 基于双管正激式变换器的金属表面去毛刺 20kV 高压脉冲电源[J]. 真空, 2018, 55(5): 19 -24 .
[10] 刘燕文, 孟宪展, 田 宏, 李 芬, 石文奇, 朱 虹, 谷 兵, 王小霞 . 空间行波管极高真空的获得与测量[J]. 真空, 2018, 55(5): 25 -28 .