欢迎访问沈阳真空杂志社 Email Alert    RSS服务

真空 ›› 2020, Vol. 57 ›› Issue (1): 67-75.doi: 10.13385/j.cnki.vacuum.2020.01.13

• • 上一篇    下一篇

陶瓷增材制造的研究现状与发展趋势*

王志永1,2, 赵宇辉2,3, 赵吉宾2,3, 王志国2,3, 何振丰2,3   

  1. 1.东北大学机械工程与自动化学院,辽宁 沈阳 110004;
    2.中国科学院沈阳自动化研究所,辽宁 沈阳 110016;
    3.中国科学院机器人与智能制造创新研究院,辽宁 沈阳 110016
  • 收稿日期:2019-09-05 出版日期:2020-01-25 发布日期:2020-03-17
  • 通讯作者: 赵志宾,研究员。
  • 作者简介:王志永(1994-),男,黑龙江省五常市人,硕士生。
  • 基金资助:
    国家重点研发专项(2018YFB1105802);国家自然科学基金(51805526)

Research Status and Development Trend of Ceramic Precursors

WANG Zhi-yong1,2, ZHAO Yu-hui2,3, ZHAO Ji-bin2,3, WANG Zhi-guo2,3, HE Zhen-feng2,3   

  1. 1.College of Mechanical Engineering and Automation, Northeastern University, Shenyang 110004, China;
    2.Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China;
    3.Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang 110016, China
  • Received:2019-09-05 Online:2020-01-25 Published:2020-03-17

摘要: 陶瓷材料具有优异的热学性能和力学性能,在众多领域显示出重要的应用前景。其固有的高强度、高硬度等性能却给陶瓷零件的成型带来了很多困难。将增材制造技术引入到陶瓷成型中将能有效克服上述困难,并为陶瓷材料复杂成型工艺提供了全新的可能性。本论文从陶瓷增材制造原料状态角度,综述了几种常见陶瓷增材制造技术的研究现状与进展,系统比较了各项技术在陶瓷领域应用的优缺点,并对今后陶瓷增材制造技术的发展进行了展望。

关键词: 陶瓷, 增材制造, 3D打印, 聚合物

Abstract: Ceramic materials have excellent thermal and mechanical properties with important application prospects in many fields. Its inherent high strength and high hardness bring many difficulties to the forming of ceramic parts. The introduction of material-adding manufacturing technology into ceramic forming will effectively overcome such difficulties and provide a new possibility for the complex forming processes of ceramic materials. In this paper, from the point of view of raw material status, the research status and progress of several common ceramic augmentation manufacturing technologies are reviewed in detail. The advantages and disadvantages of each technology in the field of ceramics are systematically compared. The development of ceramic augmentation manufacturing technology in the future is prospected.

Key words: ceramics, supplementary manufacturing, three-dimensional printing, polymer

中图分类号: 

  • TQ174.5
[1] 柴威, 邓乾发, 王羽寅, 等. 碳化硅陶瓷的应用现状[J]. 轻工机械, 2012, 30(4): 117-120.
[2] 梁栋, 何汝杰, 方岱宁. 陶瓷材料与结构增材制造技术研究现状[J]. 现代技术陶瓷, 2017, 38(4): 231-247.
[3] Marcus H L, Beaman J J, BarlowJ W, et al. Bourell, Solid freeform fabricationpowder processing[J]. American Ceramic Society Bulletin, 1990, 69(6): 1030-1031.
[4] Sachs E, Cima M, Cornie J.Three-dimensional printing: rapid tooling and prototypes directly from a CAD model[J]. CIRP Annals-Manufacturing Technology, 1990, 39(1): 201-204.
[5] 伍海东, 刘伟, 伍尚华, 等. 陶瓷增材制造技术研究进展[J]. 陶瓷学报, 2017, 38(4): 451-459.
[6] Pan Y Q, Zheng R, Liu F B et al. The use of CT scan and stereo lithography apparatus technologies in a canine individualized rib prosthesis[J]. International Journal of Surgery, 2014, 12(1): 71-75.
[7] Nakamoto T, Yamaguchi K.Consideration on the producing of high aspect ratio micro parts using UV sensitive photopolymer[C]// Micro Machine and Human Science, 1996. Proceedings of the Seventh International Symposium. IEEE, 1996.
[8] 刘厚才. 光固化三维打印快速成形关键技术研究[D]. 武汉: 华中科技大学, 2009.
[9] Zhou W Z, Li D, Chen Z W, et al.Direct fabrication of an integral ceramic mould by stereolithography[J]. P I Mech Eng B-J Eng, 2010, 224(B2): 237-243.
[10] Chen Z, Li D, Zhou W.Process parameters appraisal of fabricating ceramic parts based on stereolithography using the Taguchi method[J]. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 2012, 226(7): 1249-1258.
[11] Nguyen N T, Delhote N, Ettorre M, et al.Design and characterization of 60-GHz integrated lens antennas fabricated through ceramic stereolithography[J]. IEEE Transactions on Antennas and Propagation, 2010, 58(8):2757-2762.
[12] Leigh S J, Purssell C, Bowen J, et al.A miniature flow sensor fabricated by micro-stereolithography employing a magnetite/acrylic nanocomposite resin[J]. Sensors and Actuators A: Physical, 2011, 168(1): 66-71.
[13] Chen W, Kirihara S, Miyamoto Y.Fabrication and Measurement of Micro Three-Dimensional Photonic Crystals of SiO2 Ceramic for Terahertz Wave Applications[J]. Journal of the American Ceramic Society, 2007, 90(7): 2078-2081.
[14] Kirihara S, Niki T.Three‐Dimensional Stereolithography of Alumina Photonic Crystals for Terahertz Wave Localization[J]. International Journal of Applied Ceramic Technology, 2015, 12(1): 32-37.
[15] Scalera F, Corcione C E, Montagna F, et al.Development and characterization of UV curable epoxy/hydroxyapatite suspensions for stereolithography applied to bone tissue engineering[J]. Ceramics International, 2014, 40(10): 15455-15462.
[16] Du D, Asaoka T, Ushida T, et al.Fabrication and perfusion culture of anatomically shaped artificial bone using stereolithography[J]. Biofabrication, 2014, 6(4): 045002.
[17] Sarment D P, Al-Shammari K, Kazor C E.Stereolithographic surgical templates for placement of dental implants in complex cases[J]. International Journal of Periodontics & Restorative Dentistry, 2003, 23(3): 287-295.
[18] Lian Q, Sui W, Wu X, et al.Additive manufacturing of ZrO2 ceramic dental bridges by stereolithography[J]. Rapid Prototyping Journal, 2018, 24(1): 114-119.
[19] Nakamoto T, Yamaguchi K. Consideration on the producing of high aspect ratio micro parts using UV sensitive photopolymer[C]. Micro Machine and Human Science, 1996, Proceedings of the Seventh International Symposium(1996)53-58.
[20] Bertsch A, Zissi S, Jezequel J, et al.Microstereophotolithography using a liquid crystal display as dynamic mask-generator[J]. Microsystem Technologies, 1997, 3(2): 42-47.
[21] 张航, 许宋锋, 熊胤泽, 等. 多孔β-TCP生物陶瓷DLP打印工艺研究[J/OL]. 机械工程学报: 1-7[2019-08-30].
[22] Varadan V K, Jiang X, Varadan V V.Microstereolithography and other fabrication techniques for 3D MEMS[J]. John Wiley & Sons, 2001, 11(2):65.
[23] Le H P.Progress and trends in ink-jet printing technology[J]. Journal of Imaging Science and Technology, 1998, 42(1): 49-62.
[24] 周振君, 丁湘, 郭瑞松, 等. 陶瓷喷墨打印成型技术进展[J]. 硅酸盐通报, 2000(6): 37-41.
[25] 陈燎, 唐兴伟, 周涵, 等. 墨水直写、喷墨打印和激光直写技术及其在微电子器件中的应用[J]. 材料导报, 2017, 31(9): 158-164.
[26] Li J P, Habibovic P, Van Den Doel M, et al. K. de Groot, Bone ingrowth in porous titanium implants produced by 3D fiber deposition[J]. Biomaterials, 2007, 28(18): 2810-2820.
[27] Sachs E M, Haggerty J S, Cima M J, et al.Three-dimensional printing techniques: US, 5204055A[P]. 1993.
[28] Deckard C R.Method and apparatus for producing parts by selective sintering: US,4863538A[P]. 1989.
[29] 付旻慧, 刘凯, 刘洁, 等. 碳化硅零件的激光选区烧结及反应烧结工艺[J]. 中国机械工程, 2018, 29(17): 2111-2118.
[30] 赵靖, 马文江, 曹文斌, 等. 氮化硅陶瓷粉末的选区激光烧结[J]. 北京科技大学学报, 2006(11): 1038-1041.
[31] Kunieda M, Nakagawa T.Manufacturing of laminated deep drawing dies by laser beam cutting[J]. Advanced Technology of Plasticity, 1984(1): 520-525.
[32] Dolenc A.An overview of rapid prototyping technologies in manufacturing[J]. Citeseer, 1994, 19(5): 57-63.
[33] Griffin C, Daufenbach J, McMillin S. Desktop manufacturing: LOM vs. pressing[J]. Am. Ceram. Soc. Bull, 1994, 73(8): 109-113.
[34] Griffin C, Daufenbach J, McMillin S. Solid freeform fabrication of functional ceramic components using a laminated object manufacturing technique[J]. Solid Freeform Fabrication, 1994(17): 17-24.
[35] Crump S S.Apparatus and method for creating three-dimensional objects: US, 5121329A[P]. 1992.
[36] Chua C K, Leong K F, Lim C S.Rapid prototyping: principles and applications[M]. World Scientific, 2003.
[37] 张军战, 张海昇, 张颖, 等. 聚硅氧烷转化制备硅氧碳多孔陶瓷的研究进展[J]. 材料导报, 2017, 31(19): 91-96.
[38] 陈朝辉. 先驱体转化陶瓷基复合材料[M]. 北京: 北京出版社, 2011.
[39] 何柏林, 孙佳. 碳纤维增强碳化硅陶瓷基复合材料的研究进展及应用[J]. 硅酸盐通报, 2009, 28(06): 1197-1202+1207.
[40] Yajima S, Hayashi J, Omori M, et al.Contious silicon carbide fibers of high tensile strength[J]. Chem. Lett., 1975: 931-43.
[41] Smith T L J. Process for the production of silicon carbide by the pyrolysis of a polycarbosilane polymer: US, 4631179[P].1986-12-23.
[42] 宋麦丽, 田蔚, 闫联生, 等. 聚碳硅烷制备C/C-SiC高温复合材料的应用[J]. 固体火箭技术, 2014, 37(1): 128-133.
[43] 乔玉林, 薛胤昌. 聚合物先驱体材料体系的陶瓷化研究进展与展望[J]. 材料导报, 2016, 30(11): 1-6.
[44] 余煜玺, 李效东. SiC陶瓷先驱体聚铝碳硅烷的合成及其陶瓷化[J]. 硅酸盐学报, 2004, 32(4): 494-496+501.
[45] 郑春满, 李效东. 预氧化聚铝碳硅烷的热分解动力学及其机理[J]. 化学学报, 2007, 65(4): 355-360.
[46] 楚增勇, 冯春祥, 宋永才, 等. 先驱体转化法连续SiC纤维国内外研究与开发现状[J]. 无机材料学报, 2002(2): 193-201.
[47] 范小林, 宋永才, 李效东, 等. 耐高温SiC纤维的研究动态[J]. 宇航材料工艺, 1998(1): 13-17.
[48] 蔡溪南, 谢征芳, 王军, 等. Si-Al-C-N陶瓷先驱体研究进展[J]. 现代化工, 2010, 30(9): 13-17+19.
[49] 谢征芳, 陈朝辉, 肖加余, 等. 先驱体陶瓷[J]. 高分子材料科学与工程, 2000(6): 7-12.
[50] Tazihemida A, Pailler R, Naslain R.Synthesis of SiC ceramic fibers from nuclear reactor irradiated polycarbosilane ceramic precursor fibers[J]. Journal of Materials Science, 1997, 32: 2359-2366.
[51] 王军, 陈革, 宋永才, 等. 含镍碳化硅纤维的制备及其电磁性能Ⅰ. 含镍碳化硅纤维的制备[J]. 功能材料, 2001, 32(1): 37-39.
[52] Arai M, Isoda T. Poly(organohydrosilazanes): Japan, 6189230[P].1986-05-07.
[53] Redl G, Rochow E G.Internal motion in organosilicon polymers. I. Linear dimethylpolysilazane[J]. Journal of Polymer Science Part A-1: Polymer Chemistry, 1966, 4(3): 639-647.
[54] Rochow E G.Polymeric methylsilazanes[J]. Pure and Applied Chemistry, 1966, 13(1-2): 247-262.
[55] 邹铭, 王丹, 赵莉, 等. 常温固化耐高温400℃的有机硅-聚硅氮烷涂料[J]. 表面技术, 2018, 47(5): 83-90.
[56] Economy J, Anderson R.Properties and uses of BN fibers[J]. Chemical Abstract, 1996, 66: 66594.
[57] Maya L.Aminoborane Polymers as precursors of C-N-B ceramic materials[J]. Journal of American Ceramic Society, 1988, 71: 1104-1107.
[58] Johnson R E. Manufacturing of high Boron ceramic fibers from organboron preceramic polymers: US, 4810436[P].1989-05-07.
[59] Seyferth D, Rees W S Jr, Haggerty J S, et al. Preparation of boron-containing ceramic materials by pyrolysis of the decaborane(4)-derived[B10H12·Ph2POPPh2]x Polumers[J]. Chemisty of Materials. 1989, 1: 45~52.
[60] Narula C K, Schaeffer R, Paine R T.Synthesis of boron nitride ceramic from poly precursors[J]. Journal of American Chemical Society, 1987, 109: 5556~5557.
[61] 李文华, 王军, 谢征芳, 等. 新型氮化硼陶瓷纤维先驱体——含硅聚硼氮烷的合成与表征[J]. 化学学报, 2011, 69(16): 1936-1940.
[62] Gadow R, KERN F.A Continuous Liquid Phase Coating Process for Protective Ceramic Layers on Carbon Fibers—Process Optimization for Oxidation Protection and Tensile Strength[J]. Ceramic Engineering&Science Proceedings, 2008, 24(4): 239-246.
[63] 徐天恒. 聚硅氧烷转化SiOC陶瓷微观结构的演变与改性[D]. 长沙:国防科学技术大学, 2011.
[64] 马青松, 陈朝辉, 郑文伟, 等. 用作陶瓷先驱体的聚硅氧烷的交联与裂解[J]. 高分子材料科学与工程, 2004(2): 198-200.
[65] 熊亮萍, 许云书. 陶瓷先驱体聚合物的应用[J]. 化学进展, 2007(4): 567-574.
[66] 黄淼俊, 伍海东, 黄容基, 等. 陶瓷增材制造(3D打印)技术研究进展[J]. 现代技术陶瓷, 2017, 38(4): 248-266.
[1] 赵宇辉, 姚超, 王志国. 激光增材制造过程熔池温度测试及预测方法的研究*[J]. 真空, 2020, 57(1): 76-82.
[2] 赵腾蛟, 金楠, 林斌, 王志国. SLM金属3D打印技术在主泵样机试验中的应用研究*[J]. 真空, 2019, 56(6): 64-67.
[3] 田同同, 李论, 周波, 赵吉宾. 彩色3D打印分层切片技术研究*[J]. 真空, 2019, 56(6): 75-79.
[4] 孙长进, 赵宇辉, 王志国, 吴嘉俊, 何振丰, 王晓帆. 增材新概念结构无损检测技术发展现状及趋势研究[J]. 真空, 2019, 56(4): 65-70.
[5] 韦 俊 , 刘志宏 , 李 波 , 陈晓莉 . 大口径氧化铝陶瓷与不锈钢材料的封接及其真空检漏[J]. 真空, 2018, 55(5): 62-65.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李得天, 成永军, 张虎忠, 孙雯君, 王永军, 孙 健, 李 刚, 裴晓强. 碳纳米管场发射阴极制备及其应用研究[J]. 真空, 2018, 55(5): 1 -9 .
[2] 周彬彬, 张 建, 何剑锋, 董长昆. 基于 CVD 直接生长法的碳纳米管场发射阴极[J]. 真空, 2018, 55(5): 10 -14 .
[3] 李志胜. 空间环境下超大型红外定标用辐射屏蔽门的研制[J]. 真空, 2018, 55(5): 66 -70 .
[4] 郑 列, 李 宏. 200kV/2mA 连续可调直流高压发生器的设计[J]. 真空, 2018, 55(6): 10 -13 .
[5] 柴晓彤, 汪 亮, 王永庆, 刘明昆, 刘星洲, 干蜀毅. 基于 STM32F103 单片机的单泵运行参数数据采集系统[J]. 真空, 2018, 55(5): 15 -18 .
[6] 孙立志, 闫荣鑫, 李天野, 贾瑞金, 李 征, 孙立臣, 王 勇, 王 健, 张 强. 放样氙气在大型收集室内分布规律研究[J]. 真空, 2018, 55(5): 38 -41 .
[7] 黄 思 , 王学谦 , 莫宇石 , 张展发 , 应 冰 . 液环压缩机性能相似定律的实验研究[J]. 真空, 2018, 55(5): 42 -45 .
[8] 纪 明, 孙 亮, 杨敏勃. 一种用于对月球样品自动密封锁紧的设计[J]. 真空, 2018, 55(6): 24 -27 .
[9] 李民久, 熊 涛, 姜亚南, 贺岩斌, 陈庆川. 基于双管正激式变换器的金属表面去毛刺 20kV 高压脉冲电源[J]. 真空, 2018, 55(5): 19 -24 .
[10] 刘燕文, 孟宪展, 田 宏, 李 芬, 石文奇, 朱 虹, 谷 兵, 王小霞 . 空间行波管极高真空的获得与测量[J]. 真空, 2018, 55(5): 25 -28 .