真空 ›› 2020, Vol. 57 ›› Issue (1): 67-75.doi: 10.13385/j.cnki.vacuum.2020.01.13
王志永1,2, 赵宇辉2,3, 赵吉宾2,3, 王志国2,3, 何振丰2,3
WANG Zhi-yong1,2, ZHAO Yu-hui2,3, ZHAO Ji-bin2,3, WANG Zhi-guo2,3, HE Zhen-feng2,3
摘要: 陶瓷材料具有优异的热学性能和力学性能,在众多领域显示出重要的应用前景。其固有的高强度、高硬度等性能却给陶瓷零件的成型带来了很多困难。将增材制造技术引入到陶瓷成型中将能有效克服上述困难,并为陶瓷材料复杂成型工艺提供了全新的可能性。本论文从陶瓷增材制造原料状态角度,综述了几种常见陶瓷增材制造技术的研究现状与进展,系统比较了各项技术在陶瓷领域应用的优缺点,并对今后陶瓷增材制造技术的发展进行了展望。
中图分类号:
[1] 柴威, 邓乾发, 王羽寅, 等. 碳化硅陶瓷的应用现状[J]. 轻工机械, 2012, 30(4): 117-120. [2] 梁栋, 何汝杰, 方岱宁. 陶瓷材料与结构增材制造技术研究现状[J]. 现代技术陶瓷, 2017, 38(4): 231-247. [3] Marcus H L, Beaman J J, BarlowJ W, et al. Bourell, Solid freeform fabricationpowder processing[J]. American Ceramic Society Bulletin, 1990, 69(6): 1030-1031. [4] Sachs E, Cima M, Cornie J.Three-dimensional printing: rapid tooling and prototypes directly from a CAD model[J]. CIRP Annals-Manufacturing Technology, 1990, 39(1): 201-204. [5] 伍海东, 刘伟, 伍尚华, 等. 陶瓷增材制造技术研究进展[J]. 陶瓷学报, 2017, 38(4): 451-459. [6] Pan Y Q, Zheng R, Liu F B et al. The use of CT scan and stereo lithography apparatus technologies in a canine individualized rib prosthesis[J]. International Journal of Surgery, 2014, 12(1): 71-75. [7] Nakamoto T, Yamaguchi K.Consideration on the producing of high aspect ratio micro parts using UV sensitive photopolymer[C]// Micro Machine and Human Science, 1996. Proceedings of the Seventh International Symposium. IEEE, 1996. [8] 刘厚才. 光固化三维打印快速成形关键技术研究[D]. 武汉: 华中科技大学, 2009. [9] Zhou W Z, Li D, Chen Z W, et al.Direct fabrication of an integral ceramic mould by stereolithography[J]. P I Mech Eng B-J Eng, 2010, 224(B2): 237-243. [10] Chen Z, Li D, Zhou W.Process parameters appraisal of fabricating ceramic parts based on stereolithography using the Taguchi method[J]. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 2012, 226(7): 1249-1258. [11] Nguyen N T, Delhote N, Ettorre M, et al.Design and characterization of 60-GHz integrated lens antennas fabricated through ceramic stereolithography[J]. IEEE Transactions on Antennas and Propagation, 2010, 58(8):2757-2762. [12] Leigh S J, Purssell C, Bowen J, et al.A miniature flow sensor fabricated by micro-stereolithography employing a magnetite/acrylic nanocomposite resin[J]. Sensors and Actuators A: Physical, 2011, 168(1): 66-71. [13] Chen W, Kirihara S, Miyamoto Y.Fabrication and Measurement of Micro Three-Dimensional Photonic Crystals of SiO2 Ceramic for Terahertz Wave Applications[J]. Journal of the American Ceramic Society, 2007, 90(7): 2078-2081. [14] Kirihara S, Niki T.Three‐Dimensional Stereolithography of Alumina Photonic Crystals for Terahertz Wave Localization[J]. International Journal of Applied Ceramic Technology, 2015, 12(1): 32-37. [15] Scalera F, Corcione C E, Montagna F, et al.Development and characterization of UV curable epoxy/hydroxyapatite suspensions for stereolithography applied to bone tissue engineering[J]. Ceramics International, 2014, 40(10): 15455-15462. [16] Du D, Asaoka T, Ushida T, et al.Fabrication and perfusion culture of anatomically shaped artificial bone using stereolithography[J]. Biofabrication, 2014, 6(4): 045002. [17] Sarment D P, Al-Shammari K, Kazor C E.Stereolithographic surgical templates for placement of dental implants in complex cases[J]. International Journal of Periodontics & Restorative Dentistry, 2003, 23(3): 287-295. [18] Lian Q, Sui W, Wu X, et al.Additive manufacturing of ZrO2 ceramic dental bridges by stereolithography[J]. Rapid Prototyping Journal, 2018, 24(1): 114-119. [19] Nakamoto T, Yamaguchi K. Consideration on the producing of high aspect ratio micro parts using UV sensitive photopolymer[C]. Micro Machine and Human Science, 1996, Proceedings of the Seventh International Symposium(1996)53-58. [20] Bertsch A, Zissi S, Jezequel J, et al.Microstereophotolithography using a liquid crystal display as dynamic mask-generator[J]. Microsystem Technologies, 1997, 3(2): 42-47. [21] 张航, 许宋锋, 熊胤泽, 等. 多孔β-TCP生物陶瓷DLP打印工艺研究[J/OL]. 机械工程学报: 1-7[2019-08-30]. [22] Varadan V K, Jiang X, Varadan V V.Microstereolithography and other fabrication techniques for 3D MEMS[J]. John Wiley & Sons, 2001, 11(2):65. [23] Le H P.Progress and trends in ink-jet printing technology[J]. Journal of Imaging Science and Technology, 1998, 42(1): 49-62. [24] 周振君, 丁湘, 郭瑞松, 等. 陶瓷喷墨打印成型技术进展[J]. 硅酸盐通报, 2000(6): 37-41. [25] 陈燎, 唐兴伟, 周涵, 等. 墨水直写、喷墨打印和激光直写技术及其在微电子器件中的应用[J]. 材料导报, 2017, 31(9): 158-164. [26] Li J P, Habibovic P, Van Den Doel M, et al. K. de Groot, Bone ingrowth in porous titanium implants produced by 3D fiber deposition[J]. Biomaterials, 2007, 28(18): 2810-2820. [27] Sachs E M, Haggerty J S, Cima M J, et al.Three-dimensional printing techniques: US, 5204055A[P]. 1993. [28] Deckard C R.Method and apparatus for producing parts by selective sintering: US,4863538A[P]. 1989. [29] 付旻慧, 刘凯, 刘洁, 等. 碳化硅零件的激光选区烧结及反应烧结工艺[J]. 中国机械工程, 2018, 29(17): 2111-2118. [30] 赵靖, 马文江, 曹文斌, 等. 氮化硅陶瓷粉末的选区激光烧结[J]. 北京科技大学学报, 2006(11): 1038-1041. [31] Kunieda M, Nakagawa T.Manufacturing of laminated deep drawing dies by laser beam cutting[J]. Advanced Technology of Plasticity, 1984(1): 520-525. [32] Dolenc A.An overview of rapid prototyping technologies in manufacturing[J]. Citeseer, 1994, 19(5): 57-63. [33] Griffin C, Daufenbach J, McMillin S. Desktop manufacturing: LOM vs. pressing[J]. Am. Ceram. Soc. Bull, 1994, 73(8): 109-113. [34] Griffin C, Daufenbach J, McMillin S. Solid freeform fabrication of functional ceramic components using a laminated object manufacturing technique[J]. Solid Freeform Fabrication, 1994(17): 17-24. [35] Crump S S.Apparatus and method for creating three-dimensional objects: US, 5121329A[P]. 1992. [36] Chua C K, Leong K F, Lim C S.Rapid prototyping: principles and applications[M]. World Scientific, 2003. [37] 张军战, 张海昇, 张颖, 等. 聚硅氧烷转化制备硅氧碳多孔陶瓷的研究进展[J]. 材料导报, 2017, 31(19): 91-96. [38] 陈朝辉. 先驱体转化陶瓷基复合材料[M]. 北京: 北京出版社, 2011. [39] 何柏林, 孙佳. 碳纤维增强碳化硅陶瓷基复合材料的研究进展及应用[J]. 硅酸盐通报, 2009, 28(06): 1197-1202+1207. [40] Yajima S, Hayashi J, Omori M, et al.Contious silicon carbide fibers of high tensile strength[J]. Chem. Lett., 1975: 931-43. [41] Smith T L J. Process for the production of silicon carbide by the pyrolysis of a polycarbosilane polymer: US, 4631179[P].1986-12-23. [42] 宋麦丽, 田蔚, 闫联生, 等. 聚碳硅烷制备C/C-SiC高温复合材料的应用[J]. 固体火箭技术, 2014, 37(1): 128-133. [43] 乔玉林, 薛胤昌. 聚合物先驱体材料体系的陶瓷化研究进展与展望[J]. 材料导报, 2016, 30(11): 1-6. [44] 余煜玺, 李效东. SiC陶瓷先驱体聚铝碳硅烷的合成及其陶瓷化[J]. 硅酸盐学报, 2004, 32(4): 494-496+501. [45] 郑春满, 李效东. 预氧化聚铝碳硅烷的热分解动力学及其机理[J]. 化学学报, 2007, 65(4): 355-360. [46] 楚增勇, 冯春祥, 宋永才, 等. 先驱体转化法连续SiC纤维国内外研究与开发现状[J]. 无机材料学报, 2002(2): 193-201. [47] 范小林, 宋永才, 李效东, 等. 耐高温SiC纤维的研究动态[J]. 宇航材料工艺, 1998(1): 13-17. [48] 蔡溪南, 谢征芳, 王军, 等. Si-Al-C-N陶瓷先驱体研究进展[J]. 现代化工, 2010, 30(9): 13-17+19. [49] 谢征芳, 陈朝辉, 肖加余, 等. 先驱体陶瓷[J]. 高分子材料科学与工程, 2000(6): 7-12. [50] Tazihemida A, Pailler R, Naslain R.Synthesis of SiC ceramic fibers from nuclear reactor irradiated polycarbosilane ceramic precursor fibers[J]. Journal of Materials Science, 1997, 32: 2359-2366. [51] 王军, 陈革, 宋永才, 等. 含镍碳化硅纤维的制备及其电磁性能Ⅰ. 含镍碳化硅纤维的制备[J]. 功能材料, 2001, 32(1): 37-39. [52] Arai M, Isoda T. Poly(organohydrosilazanes): Japan, 6189230[P].1986-05-07. [53] Redl G, Rochow E G.Internal motion in organosilicon polymers. I. Linear dimethylpolysilazane[J]. Journal of Polymer Science Part A-1: Polymer Chemistry, 1966, 4(3): 639-647. [54] Rochow E G.Polymeric methylsilazanes[J]. Pure and Applied Chemistry, 1966, 13(1-2): 247-262. [55] 邹铭, 王丹, 赵莉, 等. 常温固化耐高温400℃的有机硅-聚硅氮烷涂料[J]. 表面技术, 2018, 47(5): 83-90. [56] Economy J, Anderson R.Properties and uses of BN fibers[J]. Chemical Abstract, 1996, 66: 66594. [57] Maya L.Aminoborane Polymers as precursors of C-N-B ceramic materials[J]. Journal of American Ceramic Society, 1988, 71: 1104-1107. [58] Johnson R E. Manufacturing of high Boron ceramic fibers from organboron preceramic polymers: US, 4810436[P].1989-05-07. [59] Seyferth D, Rees W S Jr, Haggerty J S, et al. Preparation of boron-containing ceramic materials by pyrolysis of the decaborane(4)-derived[B10H12·Ph2POPPh2]x Polumers[J]. Chemisty of Materials. 1989, 1: 45~52. [60] Narula C K, Schaeffer R, Paine R T.Synthesis of boron nitride ceramic from poly precursors[J]. Journal of American Chemical Society, 1987, 109: 5556~5557. [61] 李文华, 王军, 谢征芳, 等. 新型氮化硼陶瓷纤维先驱体——含硅聚硼氮烷的合成与表征[J]. 化学学报, 2011, 69(16): 1936-1940. [62] Gadow R, KERN F.A Continuous Liquid Phase Coating Process for Protective Ceramic Layers on Carbon Fibers—Process Optimization for Oxidation Protection and Tensile Strength[J]. Ceramic Engineering&Science Proceedings, 2008, 24(4): 239-246. [63] 徐天恒. 聚硅氧烷转化SiOC陶瓷微观结构的演变与改性[D]. 长沙:国防科学技术大学, 2011. [64] 马青松, 陈朝辉, 郑文伟, 等. 用作陶瓷先驱体的聚硅氧烷的交联与裂解[J]. 高分子材料科学与工程, 2004(2): 198-200. [65] 熊亮萍, 许云书. 陶瓷先驱体聚合物的应用[J]. 化学进展, 2007(4): 567-574. [66] 黄淼俊, 伍海东, 黄容基, 等. 陶瓷增材制造(3D打印)技术研究进展[J]. 现代技术陶瓷, 2017, 38(4): 248-266. |
[1] | 赵宇辉, 姚超, 王志国. 激光增材制造过程熔池温度测试及预测方法的研究*[J]. 真空, 2020, 57(1): 76-82. |
[2] | 赵腾蛟, 金楠, 林斌, 王志国. SLM金属3D打印技术在主泵样机试验中的应用研究*[J]. 真空, 2019, 56(6): 64-67. |
[3] | 田同同, 李论, 周波, 赵吉宾. 彩色3D打印分层切片技术研究*[J]. 真空, 2019, 56(6): 75-79. |
[4] | 孙长进, 赵宇辉, 王志国, 吴嘉俊, 何振丰, 王晓帆. 增材新概念结构无损检测技术发展现状及趋势研究[J]. 真空, 2019, 56(4): 65-70. |
[5] | 韦 俊 , 刘志宏 , 李 波 , 陈晓莉 . 大口径氧化铝陶瓷与不锈钢材料的封接及其真空检漏[J]. 真空, 2018, 55(5): 62-65. |
|