欢迎访问沈阳真空杂志社 Email Alert    RSS服务

真空 ›› 2020, Vol. 57 ›› Issue (4): 60-65.doi: 10.13385/j.cnki.vacuum.2020.04.13

• 真空应用 • 上一篇    下一篇

应用二维轴对称模型的微波真空干燥数值模拟*

苏天一1, 张志军1, 韩晶雪2   

  1. 1.东北大学机械工程与自动化学院,辽宁 沈阳110004;
    2.中国科学院沈阳科学仪器股份有限公司干泵事业部 辽宁 沈阳110179
  • 收稿日期:2019-09-11 出版日期:2020-07-25 发布日期:2020-07-23
  • 通讯作者: 张志军,教授,博导。
  • 作者简介:苏天一(1989-),女,辽宁省锦州市人,博士生。
  • 基金资助:
    *国家自然科学基金(批准号:31371873, 31000665, 51176027,31300408)

Numerical Simulation of Microwave Vacuum Drying Using Two-dimensional Axi-symmetric Model

SU Tian-yi1, ZHANG Zhi-jun1, HAN Jing-xue2   

  1. 1. School of Mechanical Engineering and Automation, Northeastern University, Shenyang 110004, China;
    2. Vacuum Dry Pump Business Division, SKY Technology Development CO. Ltd, Chinese Academy of Sciences, Shenyang 110179, China
  • Received:2019-09-11 Online:2020-07-25 Published:2020-07-23

摘要: 本文建立基于多孔介质的多物理场二维轴对称模型,对微波真空干燥过程进行数值模拟计算。通过数值模拟研究可知,随着微波真空干燥过程中环境压力的降低,干燥样品能在较低的温度下迅速干燥,有效提高样品干燥效率。但是,样品内部的温度及水分均匀性会随着环境压力的降低而变差。适当牺牲干燥量,降低总的微波能量输出或降低微波功率输出,可有效提高干燥样品的温度和水分的均匀性。

关键词: 微波真空干燥, 二维轴对称模型, 数值模拟.

Abstract: In this article, a two-dimensional axi-symmetric model of multi-physical porous media is developed to numerically simulate the microwave vacuum drying process. It indicates that, with the increase of environmental vacuum degree during the microwave vacuum drying process, the dried samples can be dried rapidly at a lower temperature, thus the drying efficiency and product quality can be improved. The temperature and water uniformity inside the sample become worse with the increase of ambient vacuum. Therefore, scarification of acceptable amount of drying, decreasing of the total output microwave energy or microwave power can improve the temperature and water uniformity of dried samples.

Key words: microwave vacuum drying, two-dimensional axi-symmetric model, simulation.

中图分类号: 

  • TS255.1
[1] 姚志勇, 万金庆, 庞文燕, 等. 微波低温真空干燥技术的应用研究进展[J]. 广东农业科学, 2013(13): 106-109.
[2] 纪勋光, 张力伟, 车刚, 等. 微波真空干燥技术的探讨[J]. 干燥技术与设备, 2009(5): 224-227.
[3] Zielinska M, Zielinska D.Effects of freezing, convective and microwave vacuum drying on the content of bioactive compounds and color of cranberries[J]. LWT-Food Science and Technology, 2019, 104: 202-209.
[4] Zielinska M, Ropelewska E, Markowski M.Thermophysical properties of raw, hot-air and microwave-vacuum dried cranberry fruits (Vaccinium macrocarpon)[J]. LWT-Food Science and Technology, 2017, 85: 204-211.
[5] Markowski M, Bondaruk J, Baszczak W.Rehydration Behavior of Vacuum-Microwave-Dried Potato Cubes[J]. Drying Technology, 2009(27): 296-305.
[6] Pu Y Y, Sun D W.Combined hot-air and microwave-vacuum drying for improving drying uniformity of mango slices based on hyperspectral imaging visualisation of moisture content distribution[J]. Biosystems Engineering, 2017, 156: 108-119.
[7] Jiang N, Liu C, Li D, et al.Evaluation of freeze drying combined with microwave vacuum drying for functional okra snacks Antioxidant properties, sensory quality, and energy consumption[J]. LWT-Food Science and Technology, 2017, 82: 216-226.
[8] Liu S W, Liu L J, Shi P B, et al.Optimising pulsed microwave-vacuum puffing for Shiitake mushroom (Lentinula edodes) caps and comparison of characteristics obtained using three puffing methods[J]. International Journal of Food Science & Technology, 2014, 49(9): 2111-2119.
[9] Song J, Wang X, Li D, et al.Degradation kinetics of carotenoids and visual colour in pumpkin (Cucurbita maxima L. ) slices during microwave-vacuum drying[J]. International Journal of Food Properties, 2017(20): S632-S643.
[10] Pu Y Y, Sun D W.Prediction of moisture content uniformity of microwave-vacuum dried mangoes as affected by different shapes using NIR hyperspectral imaging[J]. Innovative Food Science & Emerging Technologies, 2016, 33: 348-356.
[11] de Bruijn J, Rivas F, Rodriguez Y, et al. Effect of Vacuum Microwave Drying on the Quality and Storage Stability of Strawberries[J]. Journal of Food Processing and Preservation, 2016, 40(5): 1104-1115.
[12] Kraus S, Sólyom K, Schuchmann H P, et al.Drying Kinetics and Expansion of Non-predried Extruded Starch-Based Pellets during Microwave Vacuum Processing[J]. Journal of Food Process Engineering, 2013, 36(6): 763-773.
[13] Yanqiu M, Xinhuai Z, Bingxin L, et al.Influences of microwave vacuum puffing conditions on anthocyanin content of raspberry snack[J]. Int J Agric & Biol Eng, 2013, 6(3): 80-87.
[14] Song C, Wu T, Li Z, et al.Analysis of the heat transfer characteristics of blackberries during microwave vacuum heating[J]. Journal of Food Engineering, 2018, 223: 70-78.
[15] Li X J, Zhang B G, Li W J.Microwave-Vacuum Drying of Wood: Model Formulation and Verification[J]. Drying Technology, 2008, 26(11): 1382-1387.
[16] Zhang Z J, Su T Y, Zhang S W.Shape Effect on the Temperature Field during Microwave Heating Process[J]. Journal of Food Quality, 2018,2018: 1-24.
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李得天, 成永军, 张虎忠, 孙雯君, 王永军, 孙 健, 李 刚, 裴晓强. 碳纳米管场发射阴极制备及其应用研究[J]. 真空, 2018, 55(5): 1 -9 .
[2] 周彬彬, 张 建, 何剑锋, 董长昆. 基于 CVD 直接生长法的碳纳米管场发射阴极[J]. 真空, 2018, 55(5): 10 -14 .
[3] 李志胜. 空间环境下超大型红外定标用辐射屏蔽门的研制[J]. 真空, 2018, 55(5): 66 -70 .
[4] 郑 列, 李 宏. 200kV/2mA 连续可调直流高压发生器的设计[J]. 真空, 2018, 55(6): 10 -13 .
[5] 柴晓彤, 汪 亮, 王永庆, 刘明昆, 刘星洲, 干蜀毅. 基于 STM32F103 单片机的单泵运行参数数据采集系统[J]. 真空, 2018, 55(5): 15 -18 .
[6] 孙立志, 闫荣鑫, 李天野, 贾瑞金, 李 征, 孙立臣, 王 勇, 王 健, 张 强. 放样氙气在大型收集室内分布规律研究[J]. 真空, 2018, 55(5): 38 -41 .
[7] 黄 思 , 王学谦 , 莫宇石 , 张展发 , 应 冰 . 液环压缩机性能相似定律的实验研究[J]. 真空, 2018, 55(5): 42 -45 .
[8] 纪 明, 孙 亮, 杨敏勃. 一种用于对月球样品自动密封锁紧的设计[J]. 真空, 2018, 55(6): 24 -27 .
[9] 李民久, 熊 涛, 姜亚南, 贺岩斌, 陈庆川. 基于双管正激式变换器的金属表面去毛刺 20kV 高压脉冲电源[J]. 真空, 2018, 55(5): 19 -24 .
[10] 刘燕文, 孟宪展, 田 宏, 李 芬, 石文奇, 朱 虹, 谷 兵, 王小霞 . 空间行波管极高真空的获得与测量[J]. 真空, 2018, 55(5): 25 -28 .