欢迎访问沈阳真空杂志社 Email Alert    RSS服务

真空 ›› 2021, Vol. 58 ›› Issue (1): 6-9.doi: 10.13385/j.cnki.vacuum.2021.01.02

• 测量与控制 • 上一篇    下一篇

紧凑型微波ECR等离子体源的设计及其特性研究

柴昊1, 贾军伟1, 王斌2, 李鹏2, 崔爽2, 冯旭3, 李伟1, 刘展1, 李绍飞1, 陈权1   

  1. 1.北京东方计量测试研究所,北京 100094;
    2.北京空间机电研究所,北京 100076;
    3.北京空间飞行器总体设计部,北京 100094
  • 收稿日期:2020-02-20 出版日期:2021-01-25 发布日期:2021-01-26
  • 通讯作者: 贾军伟,高级工程师。
  • 作者简介:柴昊(1988-),男,山西省忻州市人,硕士,高级工程师。

Design and Characteristic Study on Compact Microwave ECR Plasma Source

CHAI Hao1, JIA Jun-wei1, WANG Bin2, LI Peng2, CUI Shuang2, FENG Xu3, LI Wei1, LIU Zhan1, LI Shao-fei1, CHEN Quan1   

  1. 1. Beijing Orient Institute of Measurement and Test,Beijing 100094,China;
    2. Beijing Institute of Space Mechanical and Electricity,Beijing 100076,China;
    3. Beijing Institute of Spacecraft System Engineering,Beijing 100094,China
  • Received:2020-02-20 Online:2021-01-25 Published:2021-01-26

摘要: 地面电推进试验、星载Langmuir探针地面标定等航天任务,均对等离子体参数的校准提出了需求。目前,等离子体参数的校准主要是在稳定的等离子体环境中,通过被测仪器与标准进行量值比对的方式实现,因此,获得稳定的等离子体环境是开展校准技术研究的重要前提。微波ECR源产生的等离子体具有均匀、稳定、可调节范围宽等特点,十分适合应用于等离子体校准中。本文设计研制了永磁型微波ECR等离子体源,并对该源的特性进行了实验研究,获得了该源的空间分布特性、稳定性实验结果。实验结果表明:研制的紧凑型微波ECR源稳定性、重复性均在10%以内,具有作为标准源应用于等离子体校准的潜力。

关键词: 微波ECR源, 等离子体校准, 空间分布, 稳定性

Abstract: Space missions such as electrical propulsion experiment and Langmuir probe payload calibration demand the plasma parameter calibration in order to ensure the accuracy of the measurement results. At present,the calibration of plasma parameters is mainly achieved in a stable plasma environment through comparison of the instrument and the standard. Therefore, obtaining a stable plasma environment is a fundamental requirement for the study of plasma calibration. The microwave ECR source has the characteristics of uniformity, stability and wide adjustable range, which is quite suitable to apply in the plasma calibration. In this paper, a compact permanent magnetic microwave ECR plasma source was designed and studied, and its spatial distribution and stability were obtained. The experimental results show that the stability and repeatability of the microwave ECR source used in this experiment could achieve less than 10%, which has potential to be applied as the standard plasma source for the plasma parameter calibration.

Key words: ECR source, plasma calibration, spatial distribution, stability

中图分类号: 

  • TB79
[1] Tong J, Sun L, Jia R, et al.Experimental Techniques in Simulated Space Plasma Environment on Ground[J]. Chinese Journal of Vacuum Science & Technology, 2008, 28(3): 203-207.
[2] Wolfgang, Baumjohann.Basic space plasma physics[M].London: Imperical College Press, 1996: 20-33.
[3] Chen F F, Chang J P.Lecture Notes on Principles of Plasma Processing[M]. Los Angeles: Springer US, 2003:3-20.
[4] Hebner G A, Miller P A, Woodworth J R.Handbook of Advanced Plasma Processing Techniques[M]. Berlin: Springer, 2000: 145-155.
[5] Kempkens H, Uhlenbusch J.Scattering diagnostics of low-temperature plasmas(Rayleigh scattering, thomson scattering, CARS)[J]. Plasma Sources Science & technology, 2000, 9(4):492.
[6] 郑灵, 赵青, 罗先刚, 等. 等离子体中电磁波传输特性理论与实验研究[J]. 物理学报, 2012, 61(15): 000343-349.
[7] Laframboise J G.Theory of spherical and cylindrical langmuir probes in a collisionless, maxwellian plasma at rest[J]. University of Toronto, 1966, 100(5): 15-38.
[8] Gambino N, Brandst tter M, Rollinger B, et al. A hemispherical Langmuir probe array detector for angular resolved measurements on droplet-based laser-produced plasmas[J]. Review of Scientific Instruments, 2014, 85(9): 093302.
[9] Baqueroruiz M, Avino F, Chellai O, et al.Dual Langmuir-probe array for 3D plasma studies in TORPEX[J]. Review of Scientific Instruments, 2016, 87(11): 113504.
[10] Gudmundsson J t, Alami J, Helmersson U. Spatial and temporal behavior of the plasma parameters in a pulsed magnetron discharge[J]. Surface & Coatings technology, 2002, 161(2): 249-256.
[11] 高碧荣, 刘悦. 电子回旋共振等离子体密度均匀性的数值研究[J]. 物理学报, 2011, 60(4): 359-364.
[12] Fox-Lyon N, Oehrlein G S, Godyak V.Effect of surface derived hydrocarbon impurities on Ar plasma properties[J]. Journal of Vacuum Science & Technology A Vacuum Surfaces & Films, 2014, 32(3): 030601.
[13] 唐亮. 基于LabVIEW的朗谬探针诊断系统的研制及应用[D]. 武汉: 华中科技大学, 2011.
[14] 吴金生. 基于LabVIEW的Langmuir探针等离子体诊断系统研究[D]. 上海: 上海交通大学, 2012.
[15] 李唤. 微波等离子体及其功能薄膜沉积[D]. 合肥: 中国科学技术大学, 2017.
[1] 夏翥杰, 张治国, 王红莉, 苏一凡, 唐鹏, 林松盛, 代明江, 石倩. WO3薄膜制备及其电致变色性能研究*[J]. 真空, 2020, 57(2): 47-52.
[2] 吴忠灿, 刘亮亮, 唐伟, 杨超, 马正永. 强稳定性超疏水F-DLC涂层的制备与性能研究*[J]. 真空, 2019, 56(6): 30-35.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 王杰, 康颂, 董长昆. 微型碳纳米管低压传感器工作性能研究[J]. 真空, 2021, 58(1): 1 -5 .
[2] 李福送, 王文军, 林伟健, 潘亚娟. 智能化螺杆空压机性能检测系统的总体设计*[J]. 真空, 2021, 58(1): 19 -22 .
[3] 杨乃恒. 关于真空除气使用的真空泵情况分析与讨论[J]. 真空, 2021, 58(1): 29 -32 .
[4] 王逊. 真空测量技术及航天应用[J]. 真空, 2021, 58(1): 15 -18 .
[5] 张世伟, 孙坤, 韩峰. 螺杆真空泵设计的常见问题分析[J]. 真空, 2021, 58(1): 23 -28 .
[6] 张以忱. 第二十一讲 真空卷绕镀膜[J]. 真空, 2020, 57(6): 84 -86 .
[7] 张骁, 刘招贤, 孟冬辉, 任国华, 王莉娜, 闫荣鑫. 多孔石墨烯渗氦仿真研究*[J]. 真空, 2021, 58(1): 10 -14 .
[8] 蔡潇, 曹曾, 张炜, 李瑞鋆, 黄勇. HL-2M装置真空室预抽气系统的研制*[J]. 真空, 2021, 58(1): 33 -37 .
[9] 张玉琛, 张海宝, 陈强. 高功率脉冲磁控溅射制备ZnO薄膜的研究进展*[J]. 真空, 2021, 58(1): 72 -77 .
[10] 朱志鹏, 秦彬玮, 张英莉, 岳向吉, 巴德纯. 稀薄气体流动的粒子图像测速实验研究*[J]. 真空, 2021, 58(1): 38 -44 .