欢迎访问沈阳真空杂志社 Email Alert    RSS服务

真空 ›› 2021, Vol. 58 ›› Issue (1): 1-5.doi: 10.13385/j.cnki.vacuum.2021.01.01

• 测量与控制 •    下一篇

微型碳纳米管低压传感器工作性能研究

王杰, 康颂, 董长昆   

  1. 温州大学 温州市微纳光电器件重点实验室,浙江 温州 325035
  • 收稿日期:2020-04-29 出版日期:2021-01-25 发布日期:2021-01-26
  • 通讯作者: 董长昆,教授,博导。
  • 作者简介:王杰(1993-),男,山西省长治市人,硕士。
  • 基金资助:
    *国家科学基金资助,项目号:61620106006

Study on Working Performance for Low Pressure Carbon Nanotube Micro Sensor

WANG Jie, KANG Song, DONG Chang-kun   

  1. Wenzhou Key Lab of Micro-Nano Optoelectronic Devices, Wenzhou University, Wenzhou 325035, China
  • Received:2020-04-29 Online:2021-01-25 Published:2021-01-26

摘要: 对于X射线管等小型真空器件,其内部真空监测还缺乏可靠的方法。基于碳纳米管的气体吸附影响场电子发射的特性,我们开发了一种微型低压传感器,本工作是对该传感器的场发射性能、传感性能、重复性和应用性进行研究。实验结果表明:合金材料制备的碳纳米管分布均匀、晶体性高,有良好的场发射性能;传感器对氮气和水汽具有传感效应,场发射电流能够随系统内部压力的升高而增加;在同一个压力值点的多次测试表明传感器测量一致性优于10 %,能够稳定的工作。对传感器在X射线管的应用测试表明:传感器能够监测X射线管工作时内部真空的变化,可以有效的测量微小真空电子器件内部的真空。

关键词: 碳纳米管, 吸附, 场发射, 压强传感

Abstract: For small type vacuum devices such as X-ray tubes, there are lacks of reliable method to monitor the internal vacuum. Based on the influences of gas adsorptions on carbon nanotube(CNT) field electron emissions, we developed a miniature low pressure sensor. This work studies the field emission performance, as well as sensing performances, repeatability, and application properties of the sensor. The experimental results show that the carbon nanotubes prepared by the Ni alloy distribute uniformly on the surface with high crystallinity and good field emission performance. The sensor exhibits good sensing effects for nitrogen and water gases, and the field emission current increases with the system pressures. Multiple tests at the same pressure point show that the measurement consistency of the sensor is better than 10%. The application of the sensor inside the X-ray tube shows that the sensor is able to monitor the real time change of the vacuum inside the X-ray tube, therefore, the sensor could measure the internal vacuums of micro-vacuum electronic devices effectively.

Key words: carbon nanotube, adsorption, field emission, pressure sensing

中图分类号: 

  • TB383
[1] Heo S H, Ihsan A, Cho S O.Transmission-type microfocus x-ray tube using carbon nanotube field emitters[J]. Applied physics letters, 2007, 90(18): 183109.
[2] Teo K B K, Minoux E, Hudanski L, et al. Microwave devices: carbon nanotubes as cold cathodes[J]. Nature, 2005, 437(7061): 968.
[3] Vancil B, Brodie I, Lorr J, et al.Scandate dispenser cathodes with sharp transition and their application in microwave tubes[J]. IEEE Transactions on Electron Devices, 2014, 61(6): 1754-1759.
[4] 单美琴, 刘泳良. 行波管制管过程中因真空失效的种类及原因分析[J]. 电子质量, 2017(11): 31-33.
[5] 张文丙, 张钰, 郑赟. 吸附真空泵在微波管中的应用[J]. 科协论坛(下半月), 2008(9): 47-48.
[6] Górecka-Drzazga A.Miniature and MEMS-type vacuum sensors and pumps[J]. Vacuum, 2009, 83(12): 1419-1426.
[7] Brown K B, Ma Y, Allegretto W, et al.Microstructural pressure sensor based on an enhanced resonant mode hysteresis effect[J]. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena, 2001, 19(5): 1828-1832.
[8] Miyashita H, Esashi M.Wide dynamic range silicon diaphragm vacuum sensor by electrostatic servo system[J]. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena, 2000, 18(6): 2692-2697.
[9] Li D T, Cheng Y J, Yan F, et al.Latest developments of ionization gauge[J]. Shanghai Measurement and Testing, 2012, 39(1): 2-14.
[10] Wilfert S, Edelmann C.Miniaturized vacuum gauges[J]. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 2004, 22(2): 309-320.
[11] Lee N S, Chung D S, Han I T, et al.Application of carbon nanotubes to field emission displays[J]. Diamond and Related Materials, 2001, 10(2): 265-270.
[12] Dong C, Myneni G R.Carbon nanotube electron source based ionization vacuum gauge[J]. Applied Physics Letters, 2004, 84(26): 5443-5445.
[13] Kaul A B, Manohara H M.Carbon Nanotube Vacuum Gauges With Wide Dynamic Range[J]. IEEE Transactions on Nanotechnology, 2009, 8(2): 252-257.
[14] Liu H, Nakahara H, Uemura S, et al.Ionization vacuum gauge with a carbon nanotube field electron emitter combined with a shield electrode[J]. Vacuum, 2009, 84(5): 713-717.
[15] Choi I, Woo S.Application of carbon nanotube field emission effect to an ionization gauge[J]. Applied Physics Letters, 2005, 87(17): 173104.
[16] 董长昆, 赵洋洋. 基于气体吸附的碳纳米管场发射低压氢传感技术[J]. 真空, 2017, 54(5): 1-6.
[17] 康颂, 董长昆, 张纯. 基于多壁碳纳米管场发射与吸附原理的压力传感技术研究[J]. 真空与低温, 2019, 25(4): 237-242.
[18] Zhang J, Li D, Zhao Y, et al.Wide-range vacuum measurements from MWNT field emitters grown directly on stainless steel substrates[J]. Nanoscale Research Letters, 2016, 11(1): 5.
[19] Dong C, Gupta M C.Influences of the surface reactions on the field emission from multiwall carbon nanotubes[J]. Applied Physics Letters, 2003, 83(1): 159-161.
[20] Dean K A, Chalamala B R.The environmental stability of field emission from single-walled carbon nanotubes[J]. Applied Physics Letters, 1999, 75(19): 3017-3019.
[21] Semet V, Binh V T, Vincent P, et al.Field electron emission from individual carbon nanotubes of a vertically aligned array[J]. Applied Physics Letters, 2002, 81(2): 343-345.
[22] Grujicic M, Cao G, Gersten B.Enhancement of field emission in carbon nanotubes through adsorption of polar molecules[J]. Applied Surface Science, 2003, 206(1-4): 167-177.
[23] Purcell S T, Vincent P, Journet C, et al.Hot nanotubes: Stable heating of individual multiwall carbon nanotubes to 2000 K induced by the field-emission current[J]. Physical Review Letters, 2002, 88(10): 1055021-1055024.
[1] 白彪坤, 陈叔平, 陈联, 金树峰, 史庆智, 孟岳. 液氮温度下分子筛的真空吸附特性试验研究[J]. 真空, 2021, 58(1): 45-50.
[2] 孙鲁尧, 陈光奇. 活性炭低温低压吸附等温线试验研究[J]. 真空, 2020, 57(6): 69-74.
[3] 曾环, 邓家良, 孙志和. 250mm口径低温泵设计*[J]. 真空, 2020, 57(2): 13-16.
[4] 杨威, 魏贤龙. 片上电子源的研究现状(二)*[J]. 真空, 2020, 57(1): 1-10.
[5] 李晓峰, 黄强华, 陈光奇, 何晓冬, 朱鸣. 低温绝热气瓶真空寿命模拟试验研究*[J]. 真空, 2020, 57(1): 56-61.
[6] 何剑锋, 黄卫军, 董长昆. 新型同轴电极结构碳纳米管场发射电离计[J]. 真空, 2019, 56(6): 12-15.
[7] 杨威, 魏贤龙. 片上电子源的研究现状(一)*[J]. 真空, 2019, 56(6): 16-26.
[8] 李建, 童洪辉, 但敏, 金凡亚, 王坤, 陈伦江. 场致发射电子源的应用及其研究进展[J]. 真空, 2019, 56(3): 27-31.
[9] 李晓峰, 陈光奇, 白杨, 任改红. 分子筛在低温低压下的吸附特性试验研究[J]. 真空, 2019, 56(2): 45-49.
[10] 申付波, 王 杰, 翟 悦, 周志鹏. 轻型低温吸附床壳体的研究与优化设计[J]. 真空, 2018, 55(6): 42-44.
[11] 李得天, 成永军, 张虎忠, 孙雯君, 王永军, 孙 健, 李 刚, 裴晓强. 碳纳米管场发射阴极制备及其应用研究[J]. 真空, 2018, 55(5): 1-9.
[12] 周彬彬, 张 建, 何剑锋, 董长昆. 基于 CVD 直接生长法的碳纳米管场发射阴极[J]. 真空, 2018, 55(5): 10-14.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李福送, 王文军, 林伟健, 潘亚娟. 智能化螺杆空压机性能检测系统的总体设计*[J]. 真空, 2021, 58(1): 19 -22 .
[2] 杨乃恒. 关于真空除气使用的真空泵情况分析与讨论[J]. 真空, 2021, 58(1): 29 -32 .
[3] 王逊. 真空测量技术及航天应用[J]. 真空, 2021, 58(1): 15 -18 .
[4] 张世伟, 孙坤, 韩峰. 螺杆真空泵设计的常见问题分析[J]. 真空, 2021, 58(1): 23 -28 .
[5] 张以忱. 第二十一讲 真空卷绕镀膜[J]. 真空, 2020, 57(6): 84 -86 .
[6] 柴昊, 贾军伟, 王斌, 李鹏, 崔爽, 冯旭, 李伟, 刘展, 李绍飞, 陈权. 紧凑型微波ECR等离子体源的设计及其特性研究[J]. 真空, 2021, 58(1): 6 -9 .
[7] 张骁, 刘招贤, 孟冬辉, 任国华, 王莉娜, 闫荣鑫. 多孔石墨烯渗氦仿真研究*[J]. 真空, 2021, 58(1): 10 -14 .
[8] 蔡潇, 曹曾, 张炜, 李瑞鋆, 黄勇. HL-2M装置真空室预抽气系统的研制*[J]. 真空, 2021, 58(1): 33 -37 .
[9] 张玉琛, 张海宝, 陈强. 高功率脉冲磁控溅射制备ZnO薄膜的研究进展*[J]. 真空, 2021, 58(1): 72 -77 .
[10] 朱志鹏, 秦彬玮, 张英莉, 岳向吉, 巴德纯. 稀薄气体流动的粒子图像测速实验研究*[J]. 真空, 2021, 58(1): 38 -44 .