欢迎访问沈阳真空杂志社 Email Alert    RSS服务

真空 ›› 2021, Vol. 58 ›› Issue (4): 12-20.doi: 10.13385/j.cnki.vacuum.2021.04.03

• 薄膜 • 上一篇    下一篇

稀土锆酸盐热障涂层的相稳定性和界面结合性能研究*

白明远, 王鑫, 甄真, 牟仁德, 何利民, 许振华   

  1. 中国航发北京航空材料研究院,航空材料先进腐蚀与防护航空科技重点实验室,北京 100095
  • 收稿日期:2020-12-28 出版日期:2021-07-25 发布日期:2021-08-05
  • 通讯作者: 许振华,研究员。
  • 作者简介:白明远(1980-),男,黑龙江省大兴安岭市人,硕士,高级工程师。
  • 基金资助:
    *重点领域基础研究项目(KH57200513)

Phase Stability and Interfacial Bonding Strength of Rare Earth Zirconate Novel Thermal Barrier Coatings

BAI Ming-yuan, WANG Xin, ZHEN Zhen, MU Ren-de, HE Li-min, XU Zhen-hua   

  1. AECC Beijing Institute of Aeronautical Materials, Aviation Key Laboratory of Science and Technology on advanced Corrosion and Protection for Aviation Material, Beijing 100095, China
  • Received:2020-12-28 Online:2021-07-25 Published:2021-08-05

摘要: 采用电子束物理气相沉积(EB-PVD)工艺制备了La2Zr2O7(LZ)、La2Zr2O7-3wt.%Y2O3(LZ3Y)、La2(Zr0.7Ce0.32O7(LZ7C3)和6~8wt.%Y2O3部分稳定化的ZrO2(YSZ)四种陶瓷涂层,研究了稀土锆酸盐和YSZ热障涂层的高温相稳定性、涂层结合性能和热循环行为。借助X-射线衍射仪(XRD)、扫描电子显微镜(SEM)、能谱仪(EDS)等表征手段分析了涂层的相组成、相结构稳定性、显微组织和化学成分。试验结果表明:经过1300℃长时间热处理后,LZ、LZ3Y和LZ7C3涂层粉末的XRD衍射峰均逐渐向2θ大角度方向偏移,涂层中共存的La2O3t-ZrO2和CeO2物相也产生了固溶现象,YSZ涂层则是出现了两个单斜相衍射峰且峰强度逐渐增大;在室温空气中放置336h后,LZ涂层出现了明显的片层状脱落现象;YSZ涂层的平均结合强度值最大,LZ涂层则是最小。同样,三种稀土锆酸盐涂层的热循环寿命均比YSZ涂层短。这可能与三种涂层中含有过量的La2O3有关,La2O3易于与空气中的H2O或CO2发生化学反应导致体积膨胀,从而削弱了陶瓷层与金属粘结层的界面结合性能,降低了陶瓷层的耐剥落寿命。

关键词: 稀土锆酸盐, 热障涂层, 相结构, 结合强度, 热循环寿命

Abstract: The four LZ, LZ3Y, LZ7C3 and YSZ thermal barrier coatings (TBCs)were fabricated via electron beam physical vapor deposition (EB-PVD). The high temperature phase stability, interficial bonding strength and cyclic oxidation behavior of three types of rare earth zirconates and YSZ TBCs were investigated. The phase constituent, phase structural stability, morphology and chemical composition of the four TBCs were systematically analyzed by XRD, SEM and EDS. The results indicate that the diffraction peaks belonging to the LZ, LZ3Y and LZ7C3 coating powders, which gradually shift to the larger 2θ-value after long-term thermal exposure at 1300℃. The excessive phases including of La2O3, t-ZrO2 and CeO2 coexisted in the ceramic coatings also have produced the solid solution phenomenon. The YSZ coating appears two monoclinic diffraction peaks and the intensities of these two peaks slightly increase to a certain extent. After 336h in room temperature air, the LZ coating exhibits lamellar delamination. The averaged interfacial bonding strength of YSZ coating is the highest, while that of LZ coating is the lowest. Meanwhile, the thermal cycling lives of three rare earth zirconates TBCs are lower than that of YSZ coating. It is proably related to the excess of La2O3 contained in the three new TBCs. La2O3 is easy to chemically react with H2O or CO2 in air, which further leads to volume expansion, weakens the inferfacial adhesion between the ceramic coat and bond coat and decreases the thermal cycling lifetime of the coaings.

Key words: rare earth zirconate, thermal barrier coatings, phase structure, bonding strength, thermal cycling lifetime

中图分类号: 

  • TG17
[1] 孙健, 刘书彬, 李伟, 等. 电子束物理气相沉积制备热障涂层研究进展[J]. 装备环境工程, 2019, 16(1): 1-6.
[2] ZHANG X F, ZHOU K S, LIU M, et al.CMAS corrosionand thermal cycle of Al-modified PS-PVD environmental barrier coating[J]. Ceram.Int., 2018, 44(13): 15959-15964.
[3] ZHANG X F, ZHOU K S, LIU M, et al.Mechanisms governing the thermal shock and tensile fracture of PS-PVD 7YSZ TBC[J]. Ceram.Int., 2018, 44(4): 3973-3980.
[4] SALDANA J M, SCHULZA U, RODRIGUZA G G M, et al. Microstructure and lifetime of Hf or Zr doped sputtered NiAlCr bond coat/7YSZ EB-PVD TBC systems[J]. Surf.Coat.Technol., 2018, 335: 41-51.
[5] CAO XQ.Application of Rare earths in thermal barrier coating materials[J]. J.Mater.Sci.Thchnol., 2007, 23(1): 15-35.
[6] 周雳, 邢志国, 王海斗, 等. 等离子喷涂金属/陶瓷梯度热障涂层研究进展[J].表面技术, 2020, 49(1): 122-131.
[7] SHEN Z YHE L M, XU Z H, et al. LZC/YSZ DCL TBCs by EB-PVD: microstructure, low thermal conductivityand high thermal cycling life[J]. J.Eur.Ceram.Soc., 2019, 39(4): 1443-1450.
[8] CAO XQ, VASSEN R, STÖVER D. Ceramic materials for thermal barrier coatings[J]. J.Eur.Ceram.Soc., 2004, 24(1): 1-10.
[9] 薛召露, 郭洪波, 宫声凯, 等. 新型热障涂层陶瓷隔热层材料[J]. 航空材料学报, 2018, 38(2): 10-20.
[10] SHEN Z YHE L M, XU Z H, et al. LZC/YSZ double layer coatings: EB-PVD,microstructure and thermal cyclinglife[J]. Surf.Coat.Technol., 2019, 367(15): 86-90.
[11] ZHANG H, YUAN J Y, SONG W J, et al.Composition, mechanical properties and thermal cycling performance of YSZ toughened La2Ce2O7 composite thermal barrier coatings[J]. Ceram.Int., 2020, 46(5): 6641-6651.
[12] WANG Y J, MA X X, MA R, et al.Influence of amorphous phase in LaMgAl11O19 properties of LaMgAl11O19/YSZ thermal barrier coatings[J]. Ceram.Int., 2020, 45(7): 6537-6546.
[13] XU ZH, HE LM, ZHAO Y, et al.Composition, structure evolution and cyclic oxidation behavior of La2(Zr0.7Ce0.3)2O7 EB-PVD TBCs[J]. J.Alloys.Compd., 2010, 491(1-2): 729-736.
[14] LI M H, SUN X F, GONG S K, et al.Phase transformation and bond coat oxidation behavior of EB-PVD thermal barrier coating[J]. Surf.Coat.Technol., 2004, 176(2): 209-214.
[15] SCHULZ U, NOWOTNIK A, KUNKEL S, et al.Effect of processing and interface on the durability of single and bilayer7YSZ/gadolinium zirconate EB-PVD thermal barrier coatings[J]. Surf.Coat.Technol., 2020, 381: 125107-125117.
[16] 闫洪, 窦明民, 李和平. 二氧化锆陶瓷的相变增韧机理和应用[J]. 陶瓷学报, 2000, 21(1): 46-50.
[17] BRANDON J R, TAYLOR R.Phase stability of zirconia-based thermal barrier coatings partI: Zirconia-yttria alloys[J]. Surf.Coat.Technol., 1991, 46(1): 75-90.
[18] SARUHAN B, FRANCOIS P, FRITSCHER K, et al.EB-PVD processing of pyrochlore-structured La2Zr2O7-based TBCs[J].Surf.Coat.Technol., 2004, 182(2-3): 175-183.
[19] SARUHAN B, FRITSCHER K, SCHULZ U.Y-doped La2Zr2O7 pyrochlore EB-PVD thermal barrier coatings[J]. Ceram.Eng.Sci.Proc., 2003, 24: 491-496.
[20] BOISSONNET G, CHALK G, NICHOLLS J R, et al.Phase stability and thermal insulation of YSZ and erbia-yttria co-dopedzirconia EB-PVD thermal barrier coating systems[J]. Surf.Coat.Technol., 2020, 389: 125566-125573.
[21] XU Z H, HE L M, CHEN X L, et al.Thermal cycling behavior of La2Zr2O7 coating with the addition of Y2O3 by EB-PVD[J]. J.Alloys.Compd., 2010, 508: 85-93.
[22] JESURAJ S A, KUPPUSAMI P, DHARINI T, et al.Effect of substrate temperature on microstructure and nanomechanical properties of Gd2Zr2O7 coatings prepared by EB-PVD technique[J].Ceram.Int., 2018, 44(15): 18164-18172.
[23] JUNG Y C, SASAKI T, TOMIMATSU T, et al.Distribution and structures of nanoporesin YSZ-TBC deposited by EB-PVD[J]. Sci.Technol.Adv.Mater., 2003, 4(6): 571-574.
[24] GUO X Y, LI L, PARK H M, et al.Mechanical properties of layered La2Zr2O7 thermal barrier coatings[J]. J.Therm.Spray.Tech., 2018, 27: 581-590.
[25] FROMMHERZ M, SCHOLZ A, OECHSNER M, et al.Gadolinium zirconate/YSZ thermal barrier coatings: Mixed-modeinterfacial fracture toughness and sintering behavior[J]. Surf.Coat.Technol., 2016, 286: 119-128.
[1] 戴建伟, 牟仁德, 何利民, 杨文慧, 刘德林, 许振华. 热循环条件下NiCrAlYSi/YSZ热障涂层层间损伤及元素扩散行为研究[J]. 真空, 2021, 58(3): 23-29.
[2] 李国浩, 巴德纯, 王栋, 陈红斌, 张洪琦, 杜广煜. EB-PVD制备YSZ涂层的热震性研究*[J]. 真空, 2020, 57(3): 1-4.
[3] 常振东, 牟仁德, 何利民, 黄光宏, 李建平. EB-PVD 制备热障涂层的反射光谱特性研究[J]. 真空, 2018, 55(5): 46-50.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李得天, 成永军, 张虎忠, 孙雯君, 王永军, 孙 健, 李 刚, 裴晓强. 碳纳米管场发射阴极制备及其应用研究[J]. 真空, 2018, 55(5): 1 -9 .
[2] 周彬彬, 张 建, 何剑锋, 董长昆. 基于 CVD 直接生长法的碳纳米管场发射阴极[J]. 真空, 2018, 55(5): 10 -14 .
[3] 李志胜. 空间环境下超大型红外定标用辐射屏蔽门的研制[J]. 真空, 2018, 55(5): 66 -70 .
[4] 郑 列, 李 宏. 200kV/2mA 连续可调直流高压发生器的设计[J]. 真空, 2018, 55(6): 10 -13 .
[5] 柴晓彤, 汪 亮, 王永庆, 刘明昆, 刘星洲, 干蜀毅. 基于 STM32F103 单片机的单泵运行参数数据采集系统[J]. 真空, 2018, 55(5): 15 -18 .
[6] 孙立志, 闫荣鑫, 李天野, 贾瑞金, 李 征, 孙立臣, 王 勇, 王 健, 张 强. 放样氙气在大型收集室内分布规律研究[J]. 真空, 2018, 55(5): 38 -41 .
[7] 黄 思 , 王学谦 , 莫宇石 , 张展发 , 应 冰 . 液环压缩机性能相似定律的实验研究[J]. 真空, 2018, 55(5): 42 -45 .
[8] 纪 明, 孙 亮, 杨敏勃. 一种用于对月球样品自动密封锁紧的设计[J]. 真空, 2018, 55(6): 24 -27 .
[9] 李民久, 熊 涛, 姜亚南, 贺岩斌, 陈庆川. 基于双管正激式变换器的金属表面去毛刺 20kV 高压脉冲电源[J]. 真空, 2018, 55(5): 19 -24 .
[10] 刘燕文, 孟宪展, 田 宏, 李 芬, 石文奇, 朱 虹, 谷 兵, 王小霞 . 空间行波管极高真空的获得与测量[J]. 真空, 2018, 55(5): 25 -28 .