欢迎访问沈阳真空杂志社 Email Alert    RSS服务

真空 ›› 2022, Vol. 59 ›› Issue (4): 33-40.doi: 10.13385/j.cnki.vacuum.2022.04.07

• 真空获得与设备 • 上一篇    下一篇

稀薄气体过渡流中NS/DSMC耦合计算方法的研究进展

刘万锁, 岳向吉, 蔺增   

  1. 东北大学机械工程与自动化学院,辽宁 沈阳 110819
  • 收稿日期:2021-09-13 出版日期:2022-07-25 发布日期:2022-08-09
  • 通讯作者: 蔺增,博导。
  • 作者简介:刘万锁(1989-),男,辽宁省抚顺市人,博士研究生。

Research Progress of NS/DSMC Coupling Calculation Method in the Transitional Flow of Rarefied Gas

LIU Wan-suo, YUE Xiang-ji, LIN Zeng   

  1. School of Mechanical Engineering and Automation, Northeast University, Shenyang 110819, China
  • Received:2021-09-13 Online:2022-07-25 Published:2022-08-09

摘要: 通过NS和DSMC两种方法的联合计算可以求解过渡流,NS/DSMC耦合方法同时包含NS方法计算效率与DSMC方法的计算精度优势。本文详细介绍了耦合方法发展中关键技术的原理,讨论了耦合方法在空间羽流研究中的应用进展,说明了计算域划分方法的不足。并就临近空间飞行器绕流方面的耦合技术应用进行了分析,提出耦合计算结果与实验结果的误差可能由DSMC统计散射造成,其可以通过累计统计方式消除。此外,还讨论了采用两相流模型的NS/DSMC耦合方法在MEMS领域的应用。最后就耦合方法在真空领域的应用和未来耦合算法的研究方向进行了展望。

关键词: NS/DSMC耦合计算, 过渡流, 真空, 羽流, 临近空间

Abstract: The transition flow is solved by the joint calculation of NS and DSMC methods. The NS/DSMC coupling method has the advantages of the computational efficiency of NS method and the computational accuracy of DSMC method.In this paper, the principle of key technologies in the development of coupling method is introduced in detail, the application progress of coupling method in spatial plume research is discussed, and the shortcomings of computational domain partition method are explained. Then the application of coupling technology in the flow around neighbor spacecraft is analyzed. It is proposed that the error between the coupling calculation and the experimental results may be caused by DSMC statistical scattering, which can be eliminated by cumulative statistics. In addition, the application of NS/DSMC coupling method using two-phase flow model in MEMS field is also discussed. Finally, the application of coupling method in vacuum field and the research direction of coupling algorithm in the future are prospected.

Key words: NS/DSMC coupling calculation, transition flow, vacuum, plume, near space

中图分类号: 

  • O356
[1] BIRD G A.Molecular gas dynamics and the direct simulation of gas flows[M]. New York: Oxford University Press, 1994.
[2] BIRD G A.Molecular gas dynamics[J]. NASA STI/Recon Technical Report A, 1976, 76: 40225.
[3] O'CONNELL S T, THOMPSON P A. Molecular dynamics-continuum hybrid computations: a tool for studying complex fluid flows[J]. Physical Review E, 1995, 52(6): 5792-5797.
[4] DIETRICH S, BOYD I D.Scalar and parallel optimized implementation of the direct simulation Monte Carlo method[J]. Journal of Computational Physics, 1996, 126(2): 328-342.
[5] SCHWARTZENTRUBER T E, BOYD I D.A hybrid particle-continuum method applied to shock waves[J]. Journal of Computational Physics, 2006, 215(2): 402-416.
[6] JOHN B, DAMODARAN M.Hybrid continuum-direct simulation Monte Carlo and particle-laden flow modeling in the head-disk interface gap[J]. IEEE Transactions On Magnetics, 2009, 45(11): 4929-4932.
[7] FARBER K, FARBER P, GRABEL J, et al.Development and validation of a coupled Navier-Stokes/DSMC simulation for rarefied gas flow in the production process for OLEDs[J]. Applied Mathematics and Computation, 2016, 272: 648-656.
[8] KOLOBOV V I, BAYYUK S A, ARSLANBEKOV R R, et al.Construction of a unified continuum/kinetic solver for aerodynamic problems[J]. Journal of Spacecraft and Rockets, 2005, 42(4): 598-606.
[9] KOLOBOV V, ARSLANBEKOV R, ARISTOV V, et al.Unified flow solver for aerospace applications[C]//44th AIAA Aerospace Sciences Meeting and Exhibit, 2006: 988.
[10] FLEKKOY E G, WAGNER G, FEDER J.Hybrid model for combined particle and continuum dynamics[J]. EPL(Europhysics Letters), 2000, 52(3): 271-276.
[11] HADJICONSTANTINOU N G, PATERA A T.Heterogeneous atomistic-continuum representations for dense fluid systems[J]. International Journal of Modern Physics C, 1997, 8(4): 967-976.
[12] HADJICONSTANTINOU N G.Hybrid atomistic-continuum formulations and the moving contact-line problem[J]. Journal of Computational Physics, 1999, 154(2): 245-265.
[13] TSIEN H S.Superaerodynamics,mechanics of rarefied gases[J]. Journal of the Aeronautical Sciences, 1946, 13(12): 653-664.
[14] WAGNER W.A convergence proof for Bird's direct simulation Monte Carlo method for the Boltzmann equation[J]. Journal of Statistical Physics, 1992, 66(3): 1011-1044.
[15] WADSWORTH D, ERWIN D A.One-dimensional hybrid continuum/particle simulation approach for rarefied hypersonic flows[C]//5th Joint Thermophysics and Heat Transfer Conference, 1990: 1690.
[16] WADSWORTH D, ERWIN D.Two-dimensional hybrid continuum/particle approach for rarefied flows[C]//23rd Plasmadynamics and Lasers Conference, 1992: 2975.
[17] BIRD G A.Breakdown of translational and rotational equilibrium in gaseous expansions[J]. AIAA Journal, 1970, 8(11): 1998-2003.
[18] LIAN Y Y, CHEN Y S, TSENG K C, et al.Improved parallelized hybrid DSMC-NS method[J]. Computers & Fluids, 2011, 45(1): 254-260.
[19] BOYD I D, CHEN G, GANDLER G V.Predicting failure of the continuum fluid equations in transitional hypersonic flows[J]. Physics of Fluids, 1995, 7(1): 210-219.
[20] WANG W L, BOYD I.Continuum breakdown in hypersonic viscous flows[C]//40th AIAA Aerospace Sciences Meeting & Exhibit, 2002: 651.
[21] GARCIA A L, BELL J B, CRUTCHFIELD W Y, et al.Adaptive mesh and algorithm refinement using direct simulation Monte Carlo[J]. Journal of Computational Physics, 1999, 154(1): 134-155.
[22] ROVEDA R, GOLDSTEIN D B, VARGHESE P L.Hybrid Euler/particle approach for continuum/rarefied flows[J]. Journal of Spacecraft and Rockets, 1998, 35(3): 258-265.
[23] ROVEDA R, GOLDSTEIN D B, VARGHESE P L.Hybrid Euler/direct simulation Monte Carlo calculation of unsteady slit flow[J]. Journal of Spacecraft and Rockets, 2000, 37(6): 753-760.
[24] 唐振宇, 蔡国飙. 两种用于NS-DSMC 耦合方法的连续失效参数对比[J]. 北京航空航天大学学报, 2014(3): 389-393.
[25] SCHWARTZENTRUBER T E, SCALABIN L C, BOYD I D.A modular particle-continuum numerical method for hypersonic non-equilibrium gas flows[J]. Journal of Computational Physics, 2007, 225(1): 1159-1174.
[26] WU J S, TSENG K C.Parallel DSMC method using dynamic domain decomposition[J]. International Journal for Numerical Methods in Engineering, 2005, 63(1): 37-76.
[27] QUARTERONI A M, VALLI A.Domain decomposition methods for partial differential equations[M]. New York: Oxford University Press, 1999.
[28] SUN Q, BOYD I D.Evaluation of macroscopic properties in the direct simulation Monte Carlo method[J]. Journal of Thermophysics and Heat Transfer, 2005, 19(3): 329-335.
[29] WANG W L, BOYD I D.Predicting continuum breakdown in hypersonic viscous flows[J]. Physics of Fluids, 2003, 15(1): 91-100.
[30] 李中华, 李志辉, 李海燕, 等. 过渡流区NS/DSMC 耦合计算研究[J]. 空气动力学学报, 2013, 31(3): 282-287.
[31] EGGERS J, BEYLICH A.New algorithms for application in the direct simulation Monte Carlo method[J]. Progress in Astronautics and Aeronautics, 1994, 159: 166-173.
[32] WU J S, LIAN Y Y.Parallel three-dimensional direct simulation Monte Carlo method and its applications[J]. Computers & Fluids, 2003, 32(8): 1133-1160.
[33] WU J S, TSENG K C, WU F Y.Parallel three-dimensional DSMC method using mesh refinement and variable time-step scheme[J]. Computer Physics Communications, 2004, 162(3): 166-187.
[34] WU J S, TSENG K C, LEE U M, et al.Development of a general parallel three-dimensional direct simulation Monte Carlo code[C]//AIP Conference Proceedings. American Institute of Physics, 2005, 762(1): 559-564.
[35] GARCIA A L, ALDER B J.Generation of the Chapman-Enskog distribution[J]. Journal of Computational Physics, 1998, 140(1): 66-70.
[36] AKTAS O, ALURU N R.A combined continuum/DSMC technique for multiscale analysis of microfluidic filters[J]. Journal of Computational Physics, 2002, 178(2): 342-372.
[37] WU J S, LIAN Y Y, CHENG G, et al.Development and verification of a coupled DSMC-NS scheme using unstructured mesh[J]. Journal of Computational Physics, 2006, 219(2): 579-607.
[38] 张欢迎, 贺碧蛟, 任翔. 姿轨控发动机及其羽流对太阳能帆板热影响分析[C]//中国航天第三专业信息网第四十届技术交流会暨第四届空天动力联合会议论文集:S02 液体推进及相关技术, 2019: 309-316.
[39] 陈杰, 贺碧蛟, 蔡国飙. 火星环绕器羽流效应仿真研究[J]. 载人航天, 2017, 23(6): 743-750.
[40] 邢卓异, 王彤, 舒燕, 等. 地外天体上航天器起飞瞬时羽流对主发动机干扰效应影响[J]. 航天器环境工程, 2020, 36(6): 565-570.
[41] 唐振宇, 贺碧蛟, 蔡国飙. 解耦NS/DSMC 方法计算推力器真空羽流的边界条件研究[J]. 推进技术, 2014(7): 897-904.
[42] 李志辉, 李中华, 杨东升, 等. 卫星姿控发动机混合物羽流场分区耦合计算研究[J]. 空气动力学学报, 2012, 30(4): 483-491.
[43] 包醒东, 余西龙, 毛宏霞, 等. 基于理论解析方法的高真空羽流流动及红外辐射研究[J]. 红外与激光工程, 2020, 49(1): 123-130.
[44] 李中华, 李志辉, 李海燕. Chapman-Enskog 非平衡分布在 NS/DSMC 耦合算法中应用研究[C]//第十六届全国流体力学数值方法研讨会2013论文集, 2013: 115-116.
[45] 李志辉, 梁杰, 李中华, 等. 跨流域空气动力学模拟方法与返回舱再入气动研究[J]. 空气动力学学报, 2018, 36(5): 826-847.
[46] 方方, 田园, 赵攀, 等. 空间返回航天器气动外形设计与需求分析[J]. 空气动力学学报, 2018, 36(5): 816-825.
[47] 张赛文, 张棚, 黄焜, 等. 基于N-S/DSMC耦合算法的微喷管真空羽流数值研究[C]//第五届空天动力联合会议暨中国航天第三专业信息网第41届技术交流会论文集(第一册), 2020: 236-243.
[1] 刘明昆, 李丹童, 邢子文. 双螺杆真空泵内压缩转子结构研究现状*[J]. 真空, 2022, 59(4): 28-32.
[2] 刘顺明, 宋洪, 王鹏程, 刘佳明, 关玉慧, 谭彪, 孙晓阳, 陈卫东, 刘盛进, 欧阳华甫. CSNS II离子源及LEBT真空系统*[J]. 真空, 2022, 59(4): 22-27.
[3] 徐新昀, 朱文丽, 谢晋如, 刘强, 李雪峰. 真空卷绕蒸发镀膜机上实现镀透明氧化铝膜的一种方法[J]. 真空, 2022, 59(4): 48-51.
[4] 王耀武, 狄跃忠, 尤晶, 彭建平. “碳中和、碳达峰”背景下真空铝热还原炼镁的未来发展[J]. 真空, 2022, 59(4): 64-69.
[5] 宋静思, 左野, 应冰, 刘君, 冯骏骁, 滕龙, 李元露, 张哲魁. 真空感应熔炼炉主流结构及未来发展[J]. 真空, 2022, 59(4): 70-75.
[6] 刘燕文, 孟鸣凤, 张晓林, 朱虹, 王国建, 赵恒邦, 王小霞, 张志强. 熔融热子组件的制备*[J]. 真空, 2022, 59(4): 76-79.
[7] 王鹏程, 孙晓阳, 敬罕涛, 黄涛, 刘佳明, 刘顺明, 谭彪. CSNS反角白光中子源真空系统*[J]. 真空, 2022, 59(3): 7-11.
[8] 刘胜, 崔寓淏, 窦仁超, 师立侠, 孙立臣, 任国华, 闫荣鑫. 真空试验压力变化数值模拟研究[J]. 真空, 2022, 59(3): 12-15.
[9] 周缘, 冉澳, 吴奕恒, 谢元华, 刘坤. 基于ANSYS的MEMS离子源测试用高真空腔设计与分析*[J]. 真空, 2022, 59(3): 16-19.
[10] 胡戎兴, 章恒, 余清洲, 舒晓冬, 干蜀毅. 基于unity3D平台的虚拟真空获得设备性能测试系统开发[J]. 真空, 2022, 59(3): 20-24.
[11] 赵玺皓, 赵利壮, 王君, 李雪琴, 崔锋, 王增丽, 耿茂飞. 双螺杆真空泵新型正弦螺旋线型螺杆转子的设计与分析*[J]. 真空, 2022, 59(3): 1-6.
[12] 王庆, 侯景岳, 李宏. 一种用于真空电弧熔炼的稳弧电源[J]. 真空, 2022, 59(2): 66-71.
[13] 胡圣, 郁杰, 王亮, 李刚. 一种小型真空弧离子源的触发放电结构优化研究*[J]. 真空, 2022, 59(2): 11-16.
[14] 孙成恺, 刘海静, 路同山, 李灿伦, 李卓慧, 高泽天, 王国防. 高精度梯度控温系统应用研究[J]. 真空, 2022, 59(2): 17-20.
[15] 罗威, 李卓慧, 周晓东, 王晓占, 孙成恺, 关阳, 靳兆峰, 刘海静. 超低温温区热连接方式试验研究[J]. 真空, 2022, 59(1): 64-67.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!