欢迎访问沈阳真空杂志社 Email Alert    RSS服务

真空 ›› 2022, Vol. 59 ›› Issue (6): 1-9.doi: 10.13385/j.cnki.vacuum.2022.06.01

• 真空冶金与热工 •    下一篇

真空电弧炉及凝壳炉的控制技术进展*

宋青竹1, 鄂东梅1, 王玲玲2, 乔忠路3, 张哲魁1, 孙足来1   

  1. 1.沈阳真空技术研究所有限公司,辽宁 沈阳 110042;
    2.全国真空技术标准化技术委员会,辽宁 沈阳 110042;
    3.国家真空设备质量检验检测中心,辽宁 沈阳 110042
  • 收稿日期:2022-03-05 出版日期:2022-11-25 发布日期:2022-12-05
  • 作者简介:宋青竹,男,E-mail:songqingzhu_vac@126.com。研究方向:真空技术及应用设备。
  • 基金资助:
    *2020年工信部高质量发展专项***项目; 2022年辽宁省中央引导地方科技发展资金项目(1639638850521); 辽宁省揭榜挂帅科技攻关专项(2021JH1/10400068)

Progress in the Control Technology of Vacuum Arc Remelting Furnace, Vacuum Arc Skull Casting Furnace

SONG Qing-zhu1, E Dong-mei1, WANG Ling-ling2, QIAO Zhong-lu3, ZHANG Zhe-kui1, SUN Zu-lai1   

  1. 1. Shenyang Vacuum Technology Institute Co., Ltd., Shenyang 110042, China;
    2. SAC/TC 18, Shenyang 110042, China;
    3. National Vacuum Equipment Quality Inspection and Testing Center, Shenyang 110042, China
  • Received:2022-03-05 Online:2022-11-25 Published:2022-12-05

摘要: 综述了真空电弧炉和真空凝壳炉的工作原理和国内外发展现状。介绍了真空电弧重熔(VAR)工艺控制技术发展情况,并指出电弧检测与调控对大型真空凝壳炉安全运行的重要意义。虽然,熔速控制实现了熔池糊状轮廓的稳定。但是,电弧运动改变了熔池的热量分布。基于熔速控制的电弧分布状态优化,是制造高品质铸锭的基础和工艺装备的发展方向。根据电弧运动特性,将电弧分布模型划为四类:集中、扩散、偏心和旋转。其中,扩散电弧分布模型对改善熔池轮廓和提升铸锭品质的作用明显。将VAR控制技术分为电弧分布、熔池特性和凝固过程三个组成部分。针对电弧的电磁特性,利用磁场对电弧分布进行检测和调控,将为VAR工艺带来新的技术革新。配有霍尔效应磁场传感器阵列和亥姆霍兹线圈的控制系统已应用在工业生产装备中,验证了控制系统对电弧检测与调控的有效性。

关键词: 真空电弧重熔, 真空凝壳炉, 熔速控制, 熔滴控制, 电弧分布, 亥姆霍兹线圈

Abstract: The working principle and development status of vacuum arc remelting furnace and vacuum arc skull casting furnace are described. This paper introduces the development of vacuum arc remelting(VAR) technology control technology, and points out the important significance of arc detection and regulation for the safe operation of large vacuum arc skull furnace. Although the melt rate control realizes the stability of the profile of the melt pool mushy. However, the arc motion changes the heat distribution of the pool. The optimization of arc distribution state based on melt rate control is the development direction of high quality ingots and process equipment. According to the arc motion characteristics, the arc distribution model is divided into four categories: concentrated, diffusive, eccentric and rotating. The distribution model of diffusive arc plays an obvious role in improving the profile of melt pool and the quality of ingots. VAR control technology is divided into three components: arc distribution, melt pool characteristics and solidification process. Aiming at the electromagnetic characteristics of arc, magnetic field is used to detect and regulate the arc distribution, which will bring new technological innovation to VAR process. The control system with Hall effect magnetic field sensor array and Helmholtz coils has been applied in industrial VAR furnace to verify the effectiveness of the control system in arc detection and regulation.

Key words: vacuum arc remelting, vacuum arc skull casting, melt rate control, dripshort control, vacuum arc distribution, Helmholtz coil

中图分类号: 

  • TF13
[1] 王宝霞, 张世伟. 真空工程理论基础[M]. 沈阳: 东北大学, 2005.
[2] 刘卫华. 真空自耗炉实验数学模型与控制系统的研究[D]. 重庆: 重庆大学, 2005.
[3] KING P E, CIBULA M, MOTLEY J.Control of the distribution of vacuum arcs within vacuum arc remelting with externally applied magnetic fields[J]. The Minerals, Metals & Materials Series, 2020: 273-287.
[4] THE BARPI.Explosion d′un four VAR(vacuum arc remelting)[EB/OL]. [2022-02-11].https://www.aria.developpement-durable.gouv.fr/wp-content/files_mf/A48294_a48294_fiche_impel_001.pdf.
[5] UNITED STATES DEPARTMENT OF LABOR. Accident report detail accident:201630720-employee sustains burns and fracture in explosion[EB/OL].[2022-02-11]. https://www.osha.gov/ords/ imis/ accidentsearch.accident_detail?id=201630720.
[6] INTECO. Product Introduction of VAR-vacuum arc remelting[EB/OL]. [2022-02-15].http://www.gotrawama.eu/siderurgia/VAR%20Mailversion_2012-07-03.pdf.
[7] ALD VACUUM TECHNOLOGIES GMBH. Product introduction of vacuum arc remelting [EB/OL].[2022-02-15]. https://www.ald-vt.com/wp-content/uploads/2018/01/VAR-Vacuum-Arc-Remelting-2019.05-EN.pdf.
[8] AMPERE SCIENTIFIC.VARmetricTM system:reducing defects in ingots produced by VAR[EB/OL]. [2022- 02-20].https://insights.globalspec.com/article/18960/varmetric-system-reducing-defects-in-ingots-produced-by-var.
[9] WARD R M, JACOBS M H.Electrical and magnetic techniques for monitoring arc behaviour during VAR of inconel 718: results from different operating conditions[J]. Journal of Materials Science, 2004, 39: 7135-7143.
[10] WOODSIDE C R, KING P E.A measurement system for determining the positions of arcs during vacuum arc remelting[C]//2010 IEEE Instrumentation & Measurement Technology Conference Proceedings. Austin, TX, USA: IEEE, 2010: 452-457.
[11] AERO SPACE MANUFACTURING.The MRI of vacuum arc furnace systems[EB/OL]. [2022-02-25].https://www.aero-mag.com/vacuum-arc-remelting-furnace-28012022.
[12] AMPERE SCIENTIFIC.Introducing VARmetricTM 2.0: the MRI of arc furnace systems[EB/OL].[2022-02-25]. https://www.amperescientific.com/varmetric.
[13] ПОЛУЧЕНИЕ СЛИТКОВ. Вакуумная дуговая гарнисажная печь[EB/OL].[2022-02-25]. http://titanchik.ru/about/tehnologii-proizvodstva/43-poluchenie-slitkov.html.
[14] 钱范源. 真空自耗炉计算机控制系统设计与熔滴控制方法研究[D]. 沈阳: 东北大学, 2015.
[15] KARIMI-SIBAKI E, KHARICHA A, VAKHRUSHEV A, et al.Numerical modeling and experimental validation of the effect of arc distribution on the as-solidified Ti64 ingot in vacuum arc remelting(VAR)process[J]. Journal of Materials Research and Technology, 2022, 19: 183-193.
[16] 王小川, 王佳明. 浅议真空电弧炉重熔含氮钢的过程控制[J]. 特钢技术, 2021, 27(3): 16-19.
[17] MOTLEY J, KELKAR K, KING P, et al.Measurment of the spatio-temporal distribution of arcs during vacuum arc remelting and their implications on var solidfication defects[C]//Proceedings of the Liquid Metals Processing & Casting Conference. Birmingham, UK, 2019.
[18] WOODSIDE C R, KING P E, NORDLUND C.Arc distribution during the vacuum arc remelting of Ti-6Al-4V[J]. Metallurgical & Materials Transactions B, 2013, 44(1): 154-165.
[19] PATEL A, FIORE D.On the modeling of vacuum arc remelting process in titanium alloys[C]//International Symposium on Liquid Metal Processing & Casting 2015(LMPC2015). Leoben, Austria, 2016, 143: 012017.
[20] TERHAAR J, POPPENHÄGER J, BOKELMANN D, et al. Considering the solidification structure of VAR ingots inthenumerical simulation of the cogging process[C]//7th International Symposium on Superalloys 718 and Derivatives.TMS, 2010: 66-77.
[21] PERICLEOUS K, DJAMBAZOV G, WARD M, et al.A Multi-scale 3D model of the vacuum arc remelting process[J]. Metallurgical and Materials Transactions A, 2013, 44(12): 5365-5376.
[22] CIBULA M, KING P, MOTLEY J.Feedback-based control over the spatio-temporal distribution of arcs during vacuum arc remelting via externally applied magnetic fields[J]. Metallurgical and Materials Transactions B, 2020, 51: 2483-2491.
[1] 李宏, 孙堂敏. 24脉波90kA真空凝壳炉用直流电源的研制及应用[J]. 真空, 2019, 56(2): 57-61.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李得天, 成永军, 张虎忠, 孙雯君, 王永军, 孙 健, 李 刚, 裴晓强. 碳纳米管场发射阴极制备及其应用研究[J]. 真空, 2018, 55(5): 1 -9 .
[2] 周彬彬, 张 建, 何剑锋, 董长昆. 基于 CVD 直接生长法的碳纳米管场发射阴极[J]. 真空, 2018, 55(5): 10 -14 .
[3] 李志胜. 空间环境下超大型红外定标用辐射屏蔽门的研制[J]. 真空, 2018, 55(5): 66 -70 .
[4] 郑 列, 李 宏. 200kV/2mA 连续可调直流高压发生器的设计[J]. 真空, 2018, 55(6): 10 -13 .
[5] 柴晓彤, 汪 亮, 王永庆, 刘明昆, 刘星洲, 干蜀毅. 基于 STM32F103 单片机的单泵运行参数数据采集系统[J]. 真空, 2018, 55(5): 15 -18 .
[6] 孙立志, 闫荣鑫, 李天野, 贾瑞金, 李 征, 孙立臣, 王 勇, 王 健, 张 强. 放样氙气在大型收集室内分布规律研究[J]. 真空, 2018, 55(5): 38 -41 .
[7] 黄 思 , 王学谦 , 莫宇石 , 张展发 , 应 冰 . 液环压缩机性能相似定律的实验研究[J]. 真空, 2018, 55(5): 42 -45 .
[8] 纪 明, 孙 亮, 杨敏勃. 一种用于对月球样品自动密封锁紧的设计[J]. 真空, 2018, 55(6): 24 -27 .
[9] 李民久, 熊 涛, 姜亚南, 贺岩斌, 陈庆川. 基于双管正激式变换器的金属表面去毛刺 20kV 高压脉冲电源[J]. 真空, 2018, 55(5): 19 -24 .
[10] 刘燕文, 孟宪展, 田 宏, 李 芬, 石文奇, 朱 虹, 谷 兵, 王小霞 . 空间行波管极高真空的获得与测量[J]. 真空, 2018, 55(5): 25 -28 .