欢迎访问沈阳真空杂志社 Email Alert    RSS服务

真空 ›› 2022, Vol. 59 ›› Issue (6): 40-44.doi: 10.13385/j.cnki.vacuum.2022.06.07

• 薄膜 • 上一篇    下一篇

利用PEALD制备PET基Al2O3阻隔膜及其性能研究*

陈兰兰, 孙小杰, 尉琳琳, 任月庆, 任冬雪, 梁文斌   

  1. 北京低碳清洁能源研究院,北京 102209
  • 收稿日期:2022-03-03 出版日期:2022-11-25 发布日期:2022-12-05
  • 作者简介:陈兰兰(1987-),女,河北省唐山市人,博士。
  • 基金资助:
    *国家重点研发计划(2018YFB1500200)

Properties of PET Based Al2O3Barrier Thin Films Fabricated by Plasma Enhanced Atomic Layer Deposition

CHEN Lan-lan, SUN Xiao-jie, WEI Lin-lin, REN Yue-qing, REN Dong-xue, LIANG Wen-bin   

  1. National Institute of Clean-and-Low-Carbon Energy, Beijing 102209, China
  • Received:2022-03-03 Online:2022-11-25 Published:2022-12-05

摘要: 在低温80℃的沉积条件下,采用等离子体增强原子层沉积(PEALD)技术在柔性聚对苯二甲酸乙二醇酯(PET)基底上制备氧化铝(Al2O3)阻隔薄膜。通过X射线光电子能谱、椭圆偏振仪测试分析表明,制备的Al2O3薄膜纯度较高,均匀性好。同时,通过调节沉积循环周期制备了不同厚度的Al2O3薄膜,研究了薄膜厚度对其表面形貌、表面粗糙度、透光率以及水汽透过率的影响。结果表明,沉积循环周期为500cycles时制备的 Al2O3薄膜性能最为优异,表面粗糙度为1.52nm,400~1200nm波长范围内平均透光率为90.4%,水汽透过率为3.15×10-3g·m-2·d-1

关键词: 氧化铝, 阻隔膜, 等离子体增强原子层沉积(PEALD)

Abstract: Aluminum Oxide (Al2O3) barrier films were prepared by plasma enhanced atomic layer deposition (PEALD) at 80℃ with flexible polyethylene terephthalate (PET) as substrate. The test results of X-ray photoelectron spectroscopy and ellipsometer show that the prepared Al2O3 films have high purity and good uniformity. Besides, Al2O3 films with different thickness were prepared by adjusting the deposition cycle. The effects of film thickness on surface morphology, surface roughness, optical transmission and water vapor transmittance rate (WVTR) were studied. The results show that Al2O3 film prepared with 500 deposition cycles exhibits the best performance, with a surface roughness of 1.52nm, an average transmittance (400-1200nm) of 90.4%, and a WVTR of 3.15×10-3g·m-2·d-1.

Key words: Al2O3, barrier film, PEALD

中图分类号: 

  • TB43
[1] 魏海英, 郭红革, 秦莹莹, 等. 大气压介质阻挡放电等离子体辅助原子层沉积氧化铝阻隔膜[J]. 材料导报, 2018, 32(增刊2): 311-314.
[2] 林晶, 于贵文, 孙智慧, 等. 等离子体增强原子层沉积增透阻隔膜的研究[J]. 真空科学与技术学报, 2021, 41(6): 566-570.
[3] GUO H C, YE E, LI Z, et al.Recent progress of atomic layer deposition on polymeric materials[J]. Materials Science and Engineering C, 2017, 70(2): 1182-1191.
[4] JARVIS K L, EVANS P J.Growth of thin barrier films on flexible polymer substrates by atomic layer deposition[J]. Thin Solid Films, 2017, 624(28): 111-135.
[5] 明帅强, 王浙加, 吴鹿杰, 等. 原子层沉积法制备 SnO2薄膜及其对钙钛矿电池的性能影响[J]. 材料导报, 2022, 36(7): 122-127.
[6] DAMERON A A, DAVIDSON S D, BURTON B B, et al.Gas diffusion barriers on polymers using multilayers fabricated by Al2O3 and rapid SiO2 atomic layer deposition[J]. Journal of Physical Chemistry C, 2008, 112(12): 4573-4580.
[7] KIM H, LEE H B R, MAENG W J. Applications of atomic layer deposition to nanofabrication and emerging nanodevices[J]. Thin Solid Films, 2009, 517(8): 2563-2580.
[8] HIRVIKORPI T, LAINE R, VÄHÄ-NISSI M, et al. Barrier properties of plastic films coated with an Al2O3 layer by roll-to-toll atomic layer deposition[J]. Thin Solid Films, 2014, 550: 164-169.
[9] CARCIA P F, MCLEAN R S, HEGEDUS S.Encapsulation of Cu(InGa)Se2 solar cell with Al2O3 thin-film moisture barrier grown by atomic layer deposition[J]. Solar Energy Materials & Solar Cells, 2010, 94: 2375-2378.
[10] HIRVIKORPI T, VÄHÄ-NISSI M, NIKKOLA J, et al. Thin Al2O3 barrier coatings onto temperature-sensitive packaging materials by atomic layer deposition[J]. Surface Coatings Technology, 2011, 205(21/22): 5088-5092.
[11] GRONER M D, GEORGE S M, MCLEAN R S, et al.Gas diffusion barriers on polymers using Al2O3 atomic layer deposition[C]//Society of Vacuum Coaters Annual Technical Conference. Denver, 2006, 88: 051907.
[12] LI M, GAO D, LI S, et al.Realization of highly-dense Al2O3 gas barrier for top-emitting organic light-emitting diodes by atomic layer deposition[J]. RSC Advances, 2015, 5: 104613.
[13] 刘媛媛, 杜纯, 曹坤, 等. 沉积功率和退火工艺对 PE-ALD 氧化铝薄膜的影响[J]. 半导体制造技术, 2018, 43(8): 610-615.
[14] LIM J W, YUN S J.Electrical properties of alumina films by plasma-enhanced atomic layer deposition[J]. Electrochemical and Solid State Letters, 2004, 7(8): F45.
[15] LEE J G, KIM H G, KIM S S.Enhancement of barrier properties of aluminum oxide layer by optimization of plasma-enhanced atomic layer deposition process[J]. Thin Solid Films, 2013, 534: 515-519.
[16] KIM J H, CHOI E Y, KIM B J, et al.Stability enhancement of GaInP/GaAs/Ge triple-junction solar cells using Al2O3 moisture-barrier layer[J].Vacuum, 2019, 162: 47-53.
[17] OH J, SHIN S, PARK J, et al.Characteristics of Al2O3/ZrO2 laminated films deposited by ozone-based atomic layer deposition for organic device encapsulation[J]. Thin Solid Films, 2016, 599: 119-124.
[18] 吴鹿杰, 文庆涛, 高雅增, 等. 基于原子层沉积技术的高精度多层膜X射线菲涅尔波带片的制备研究[J]. 光子学报, 2021, 50(1): 0123001.
[19] KWON J H, JEONG E G, JEON Y, et al.Design of highly water resistant, impermeable, and flexible thin film encapsulation based on inorganic/organic hybrid layers[J]. ACS Applied Materials Interfaces, 2019, 11(3): 3251-3261.
[20] 但威. 基于卷对卷的空间隔离原子层沉积方法及应用[D]. 武汉: 华中科技大学, 2018.
[1] 徐新昀, 朱文丽, 谢晋如, 刘强, 李雪峰. 真空卷绕蒸发镀膜机上实现镀透明氧化铝膜的一种方法[J]. 真空, 2022, 59(4): 48-51.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李得天, 成永军, 张虎忠, 孙雯君, 王永军, 孙 健, 李 刚, 裴晓强. 碳纳米管场发射阴极制备及其应用研究[J]. 真空, 2018, 55(5): 1 -9 .
[2] 周彬彬, 张 建, 何剑锋, 董长昆. 基于 CVD 直接生长法的碳纳米管场发射阴极[J]. 真空, 2018, 55(5): 10 -14 .
[3] 李志胜. 空间环境下超大型红外定标用辐射屏蔽门的研制[J]. 真空, 2018, 55(5): 66 -70 .
[4] 郑 列, 李 宏. 200kV/2mA 连续可调直流高压发生器的设计[J]. 真空, 2018, 55(6): 10 -13 .
[5] 柴晓彤, 汪 亮, 王永庆, 刘明昆, 刘星洲, 干蜀毅. 基于 STM32F103 单片机的单泵运行参数数据采集系统[J]. 真空, 2018, 55(5): 15 -18 .
[6] 孙立志, 闫荣鑫, 李天野, 贾瑞金, 李 征, 孙立臣, 王 勇, 王 健, 张 强. 放样氙气在大型收集室内分布规律研究[J]. 真空, 2018, 55(5): 38 -41 .
[7] 黄 思 , 王学谦 , 莫宇石 , 张展发 , 应 冰 . 液环压缩机性能相似定律的实验研究[J]. 真空, 2018, 55(5): 42 -45 .
[8] 纪 明, 孙 亮, 杨敏勃. 一种用于对月球样品自动密封锁紧的设计[J]. 真空, 2018, 55(6): 24 -27 .
[9] 李民久, 熊 涛, 姜亚南, 贺岩斌, 陈庆川. 基于双管正激式变换器的金属表面去毛刺 20kV 高压脉冲电源[J]. 真空, 2018, 55(5): 19 -24 .
[10] 刘燕文, 孟宪展, 田 宏, 李 芬, 石文奇, 朱 虹, 谷 兵, 王小霞 . 空间行波管极高真空的获得与测量[J]. 真空, 2018, 55(5): 25 -28 .