欢迎访问沈阳真空杂志社 Email Alert    RSS服务

真空 ›› 2024, Vol. 61 ›› Issue (3): 26-32.doi: 10.13385/j.cnki.vacuum.2024.03.05

• 真空获得与设备 • 上一篇    下一篇

基于ANSYS的储氢气瓶快充温升流热固耦合模拟研究*

杨刚1, 欧晨希2, 陈新辉2, 黄思2   

  1. 1.广东省特种设备检测研究院,广东 佛山 528000;
    2.华南理工大学机械与汽车工程学院,广东 广州 510641
  • 收稿日期:2023-09-27 发布日期:2024-06-04
  • 通讯作者: 黄 思,教授。
  • 作者简介:杨 刚(1990-),男,河北省石家庄市人,硕士,工程师。
  • 基金资助:
    * 国家市场监督管理总局科技计划项目(2020MK802); 氢能储运设备检验检测机构认可关键技术研究(2022CNAS14)

Study on Fluid-thermal-solid Coupling Numerical Simulation on the Temperature Rise of Hydrogen Storage Cylinder During Fast Filling Process Based on ANSYS

YANG Gang1, OU Chen-xi2, CHEN Xin-hui2, HUANG Si2   

  1. 1. Guangdong Institute of Special Equipment Inspection and Research, Foshan 528000, China;
    2. School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou 510641, China
  • Received:2023-09-27 Published:2024-06-04

摘要: 以某款车用碳纤维全缠绕储氢气瓶为研究对象,基于ANSYS Workbench平台,充分考虑气瓶不同结构层的差异性和温度载荷分布不均匀性,进行了流热固耦合模拟计算分析。首先对气瓶快速充装过程内部气体流场进行三维数值模拟研究其温升规律,然后将流场计算结果加载到气瓶结构层进行稳态热分析,最后将流场及热分析结果均加载到气瓶结构层进行结构静力学分析。结果表明:当充装结束时,气瓶最高温度及碳纤维复合层受到的最大应力均出现在瓶尾封头和筒体的连接处;相较于内压引起的机械应力,温度载荷引起的热应力很小;机械应力与耦合应力数值相差不大,碳纤维复合层的机械应力略小于耦合应力,而铝合金内胆层由于膨胀系数大,温度载荷引起的压缩热应力抵消了一部分机械应力,使得耦合应力小于机械应力。

关键词: 碳纤维全缠绕储氢气瓶, 快充温升, 流热固耦合

Abstract: Taking a vehicle carbon fiber fully-wound hydrogen storage cylinder as the research object, based on the ANSYS workbench platform, the difference of the cylinder structure layer and the uneven distribution of temperature load are fully considered, and the fluid-thermal-solid coupling numerical simulation and analysis are carried out. The specific method is to firstly carry out 3D numerical simulation of the gas flow field inside the cylinder during the fast filling process to study the law of temperature rise, then load the flow field calculation results into the cylinder structural layer for steady-state thermal analysis, and finally load both the flow field and thermal analysis results into the cylinder structural layer for structural static analysis. The results show that the maximum temperature of the cylinder and the maximum stress on the carbon fiber composite layer appear at the connection between the end head and the cylinder when the filling is finished. The thermal stress caused by the temperature load is small compared with the mechanical stress caused by the internal pressure. The difference between the mechanical stress and the coupling stress is not large, and the mechanical stress on the carbon fiber composite layer is slightly smaller than the coupling stress, while the thermal stress caused by the temperature load on the aluminum alloy liner layer is partly offset by the mechanical stress due to the large expansion coefficient, making the coupling stress smaller than the mechanical stress.

Key words: carbon fiber fully wound hydrogen storage cylinder, temperature rise during fast filling, fluid-thermal-solid coupling

中图分类号:  TQ342.742;TB33

[1] LIU J, ZHENG S, ZHANG Z, et al.Numerical study on the fast filling of on-bus gaseous hydrogen storage cylinder[J]. International Journal of Hydrogen Energy, 2020, 45(15): 9241-9251.
[2] MELIDEO D, BARALDI D, ACOSTA-IBORRA B, et al.CFD simulations of filling and emptying of hydrogen tanks[J]. International Journal of Hydrogen Energy, 2017, 42(11): 7304-7313.
[3] SADI M, DEYMI-DASHTEBAYAZ M.Hydrogen refueling process from the buffer and the cascade storage banks to HV cylinder[J]. International journal of hydrogen energy, 2019, 44(33): 18496-18504.
[4] HEITSCH M, BARALDI D, MORETTO P.Numerical investigations on the fast filling of hydrogen tanks[J]. International Journal of Hydrogen Energy, 2011, 36(3): 2606-2612.
[5] SURYAN A, KIM H D, SETOGUCHI T.Three dimensional numerical computations on the fast filling of a hydrogen tank under different conditions[J]. International Journal of Hydrogen Energy, 2012, 37(9): 7600-7611.
[6] CEBOLLA R O, ACOSTA B, MIGUEL N D, et al.Effect of precooled inlet gas temperature and mass flow rate on final state of charge during hydrogen vehicle refueling[J]. International Journal of Hydrogen Energy, 2015, 40(13): 4698-4706.
[7] 董文利, 宋高峰, 郑杨艳. 车载复合材料高压储氢气瓶快速充装温升控制数值模拟研究[J]. 化工装备技术, 2022, 43(1): 27-32.
[8] RAMASAMY V, RICHARDSON E S.Thermal response of high-aspect-ratio hydrogen cylinders undergoing fast-filling[J]. International Journal of Heat and Mass Transfer, 2020, 160: 120179.
[9] 宋冠强, 王依芮, 赵贯甲, 等. 70MPa Ⅲ型车载储氢气瓶充氢过程的热力学响应特性模拟[J]. 太阳能学报, 2022, 43(9): 488-492.
[10] HEATH M, WOODFIELD P L, HALL W, et al.An experimental investigation of convection heat transfer during filling of a composite-fiber pressure vessel at low Reynolds number[J]. Experimental thermal and fluid science, 2014, 54: 151-157.
[11] XIAO J S, CHENG J, WANG X, et al.Final hydrogen temperature and mass estimated from refueling parameters[J]. International Journal of Hydrogen Energy, 2018, 43(49): 22409-22418.
[12] CHENG J, XIAO J S, BENARD P, et al.Estimation of final hydrogen temperatures during refueling 35 MPa and 70 MPa tanks[J]. Energy Procedia, 2017,105: 1363-1369.
[13] AKCAY I H, KAYNAK I.Analysis of multilayered composite cylinders under thermal loading[J]. Journal of Reinforced Plastics & Composites, 2005, 24(11): 1169-1179.
[14] 卢清荣. 复合材料缠绕压力容器充压过程的热力分析[D]. 大连: 大连理工大学, 2013.
[15] 王亮. 基于微观力学分析的复合材料储氢容器强度与寿命研究[D]. 杭州: 浙江大学, 2016.
[16] 李春胜, 黄德彬. 机械工程材料手册[M]. 北京:电子工业出版社, 2007.
[17] JEARY B.Fast filling of compressed hydrogen fuel storage cylinders[R]. Victoria: Anonymous Canadian Hydrogen Association, 2001.
[18] DICKEN C J B, MÉRIDA W. Measured effects of filling time and initial mass on the temperature distribution within a hydrogen cylinder during refuelling[J]. Journal of Power Sources, 2006, 165(1): 324-336.
[19] International Organization for Standardization. Gaseous hydrogen and hydrogen blends-land vehicle fuel tanks:ISO/TS 15869: 2009[S]. Switzerland: ISO, 2009.
[20] Society of Automotive Engineers. Fueling protocols for light duty gaseous hydrogen surface vehicles:SAE J2601-2020[S]. United States: SAE International, 2014.
[21] 郑津洋, 崔天成, 顾超华, 等. 高压氢气对6061铝合金力学性能的影响[J]. 高压物理学报, 2017, 31(5): 505-510.
[22] 孙喜峰. 碳纤维增强复合材料应力检测方法对比研究[J].今日制造与升级, 2022(6): 100-102.
[23] NAKADA M, MIYANO Y, KINOSHITA M, et al.Time-temperature dependence of tensile strength of unidirectional CFRP[J]. Journal of composite materials, 2002, 36(22): 2567-2581
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李得天, 成永军, 张虎忠, 孙雯君, 王永军, 孙 健, 李 刚, 裴晓强. 碳纳米管场发射阴极制备及其应用研究[J]. 真空, 2018, 55(5): 1 -9 .
[2] 周彬彬, 张 建, 何剑锋, 董长昆. 基于 CVD 直接生长法的碳纳米管场发射阴极[J]. 真空, 2018, 55(5): 10 -14 .
[3] 柴晓彤, 汪 亮, 王永庆, 刘明昆, 刘星洲, 干蜀毅. 基于 STM32F103 单片机的单泵运行参数数据采集系统[J]. 真空, 2018, 55(5): 15 -18 .
[4] 李民久, 熊 涛, 姜亚南, 贺岩斌, 陈庆川. 基于双管正激式变换器的金属表面去毛刺 20kV 高压脉冲电源[J]. 真空, 2018, 55(5): 19 -24 .
[5] 刘燕文, 孟宪展, 田 宏, 李 芬, 石文奇, 朱 虹, 谷 兵, 王小霞 . 空间行波管极高真空的获得与测量[J]. 真空, 2018, 55(5): 25 -28 .
[6] 徐法俭, 王海雷, 赵彩霞, 黄志婷. 化学气体真空 - 压缩回收系统在环境工程中应用研究[J]. 真空, 2018, 55(5): 29 -33 .
[7] 谢元华, 韩 进, 张志军, 徐成海. 真空输送的现状与发展趋势探讨(五)[J]. 真空, 2018, 55(5): 34 -37 .
[8] 孙立志, 闫荣鑫, 李天野, 贾瑞金, 李 征, 孙立臣, 王 勇, 王 健, 张 强. 放样氙气在大型收集室内分布规律研究[J]. 真空, 2018, 55(5): 38 -41 .
[9] 黄 思 , 王学谦 , 莫宇石 , 张展发 , 应 冰 . 液环压缩机性能相似定律的实验研究[J]. 真空, 2018, 55(5): 42 -45 .
[10] 常振东, 牟仁德, 何利民, 黄光宏, 李建平. EB-PVD 制备热障涂层的反射光谱特性研究[J]. 真空, 2018, 55(5): 46 -50 .