欢迎访问沈阳真空杂志社 Email Alert    RSS服务

真空 ›› 2024, Vol. 61 ›› Issue (5): 64-73.doi: 10.13385/j.cnki.vacuum.2024.05.09

• 测量与控制 • 上一篇    下一篇

新型光电阴极的研究进展*

刘燕文1, 尚新文1, 陆玉新2, 田宏1, 赵恒邦1   

  1. 1.中国科学院空天信息创新研究院 北京 100190;
    2.天津交通职业学院 天津 300110
  • 收稿日期:2024-04-24 出版日期:2024-09-25 发布日期:2024-10-10
  • 作者简介:刘燕文(1964-),男,天津人,博士。
  • 基金资助:
    *国家重大项目(2009ZYHD0001); 国家重点项目(2209WD0013-2); 预研项目(31512050304)

The Development of a Novel Photocathode

LIU Yan-wen1, SHANG Xin-wen1, LU Yu-xin2, TIAN Hong1, ZHAO Heng-bang1   

  1. 1. Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China;
    2. Tianjin Traffic Vocational Institute, Tianjin 300110, China
  • Received:2024-04-24 Online:2024-09-25 Published:2024-10-10

摘要: 为了满足高频率、小型化微波真空电子器件需求,寻找合适的阴极和激光系统,研究了一种新型锑铯光电阴极的制备方法。发射材料的蒸发源采用多孔钨海绵扩散阻挡层代替镍管加热技术,以控制发射材料的蒸发速率。为了增强阴极的吸附能力,提高光的吸收率,通过纳米粒子薄膜和离子轰击技术对阴极基体表面进行了改性处理,研究了改性前后阴极表面结构、成分及其光电发射特性。结果表明:表面改性对阴极的量子效率具有很大的提升作用,分析认为阴极表面积的增大是发射性能提高的主要原因,光吸收率的增大也提高了阴极的量子效率。

关键词: 光电阴极, 激光驱动, 多孔钨, 纳米粒子薄膜, 离子束表面改性, 量子效率

Abstract: To meet the needs of high-frequency, miniaturized vacuum microwave devices, and find suitable cathode materials and laser systems, a strategy to develop new type of Cs3Sb cathode was studied. A tungsten sponge diffusion barrier layer was used as the evaporation source of the emission material, instead of the traditional nickel tube heating method. In order to enhance the adsorption capacity and light absorption rate of the cathode, the surface of the cathode substrate was modified by nanoparticle thin film coating and ion beam surface modification. The photoemission characteristics of the photocathodes before and after surface modification of the photocathode were studied. The results show that the photoemission quantum efficiency increases greatly after modification. It is believed through analysis that the main cause for the increase in quantum efficiency is the enhancement of light absorptivity and the increase in emission surface area.

Key words: photocathode, driven by laser, porous tungsten, nanoparticle film, ion beam surface modification, quantum yield

中图分类号:  TN105.1

[1] LIU Y W, TIAN H, LU Y X, et al.Influences of diamond material on heat dissipation capabilities of helical slow wave structures[J]. IEEE Transactions on Electron Devices, 2019, 66(12): 5321-5326.
[2] 刘燕文, 田宏, 韩勇, 等. 支取发射电流过程对热阴极温度影响的研究[J]. 中国科学E辑: 技术科学, 2008, 38(9): 1515-1520.
[3] LIU Y W, TIAN H, HAN Y, et al.Temperature variation of a thermionic cathode during electron emission[J]. Science in China Series E: Technological Sciences, 2008, 51: 1497-1501.
[4] 王小霞, 廖显恒, 罗积润, 等. 新型贮存式氧化物阴极寿命机理的初步探讨[J]. 物理学报, 2009, 58(2): 1280-1286.
[5] WANG X X, LIAO X H, LUO J R.Study on the Ni-Re-Ir sponge oxide cathode[J]. IEEE Transactions on Electron Devices, 2012, 59(2): 492-495.
[6] GÄRTNER G, JANIEL P, RAASCH D. Direct determination of electrical conductivity of oxide cathodes[J]. Applied Surface Science, 2002, 201(1-4): 35-40.
[7] RAJU R S, MALONEY C E.Characterization of an impregnated scandate cathode using a semiconductor model[J]. IEEE Transactions on Electron Devices, 1994, 41(12): 2460-2467.
[8] WANG J S, LIU W, LI L L, et al.A study of scandia-doped pressed cathodes[J]. IEEE Transactions on Electron Devices, 2009, 56(5): 799-804.
[9] MELNIKOVA I P, VOROZHEIKIN V G, USANOV D A.Correlation of emission capability and longevity of dispenser cathodes with characteristics of tungsten powders[J]. Applied Surface Science, 2003, 215(1-4): 59-64.
[10] LIU Y W, TIAN H, HAN Y, et al.Study on the emission properties of the impregnated cathode with nanoparticle films[J]. IEEE Transactions on Electron Devices, 2012, 59(12): 3618-3624.
[11] 刘燕文, 刘胜英, 田宏, 等. 用于空间行波管的高效率覆膜阴极组件的研究[J]. 真空科学与技术学报, 2006, 26(3): 240-242.
[12] BARIK R K, BERA A, RAJU R S, et al.Development of alloy-film coated dispenser cathode for terahertz vacuum electron devices application[J]. Applied Surface Science, 2013, 276: 817-822.
[13] ISAGAWA S, HIGUCHI T, KOBAYASHI K, et al.Application of M-type cathodes to high-power cw klystrons[J]. Applied Surface Science, 1999, 146(1-4): 89-96.
[14] 刘燕文, 田宏. 小多注速调管覆膜阴极的制备方法: CN00132779.8[P].2002-06-19.
[15] ZHU J, WANG S L, XIE S H, et al.Hexagonal single crystal growth of WO3 nanorods along a [110] axis with enhanced adsorption capacity[J]. Chemical Communications, 2011, 47(15): 4403-4405.
[16] WANG H L, HAO Q L, YANG X J, et al.A nanostructured graphene/polyaniline hybrid material for supercapacitors[J]. Nanoscale, 2010, 2(10): 2164-2170.
[17] WANG S L, HE Y H, LIU X L, et al.Large-scale synthesis of tungsten single-crystal microtubes via vapor-deposition process[J]. Journal of Crystal Growth, 2011, 316(1): 137-144.
[18] WHALEY D, DUGGAL R, ARMSTRONG C, et al.High average power field emitter cathode and testbed for X/Ku-band cold cathode TWT[C]// 2013 IEEE 14th International Vacuum Electronics Conference (IVEC). Paris, France: IEEE, 2013.
[19] LIU Y W, ZHANG G M, XUE Z Q, et al.The high field enhancement of photoemission from Na2KSb photocathodes[J]. Nuclear Instruments and Methods in Physics Research Section A, 1996, 376(1): 146-147.
[20] 刘燕文, 王国建, 田宏, 等. 激光驱动的新型光电阴极[J]. 中国科学: 信息科学, 2021, 51(9): 1575-1586.
[21] 刘燕文, 田宏, 陆玉新, 等. 用于微波真空电子器件的光电阴极[J]. 真空, 2019, 56(6): 7-11.
[22] 刘燕文, 张耿民, 刘惟敏, 等. 激光驱动的钠钾锑光电阴极的稳定性研究[J]. 中国激光, 1996, 23(3): 255-259.
[23] LEE C H, OETTINGER P E, PUGH E R, et al.Electron emission of over 200 A/cm2 from a pulsed-laser irradiaied photocaihode[J]. IEEE Transactions on Nuclear Science, 1985, 32(5): 3045-3047.
[24] STEIN W, WARREN R, WINSTON J, et al.The accelerator for the Los Alamos free-electron laser-IV[J]. IEEE Journal of Quantum Electronics, 1985, 21(7): 889-894.
[25] OETTINGER P E, SHEFER R E, BIRX D L, et al.Photoelectron sources: selection and analysis[J]. Nuclear Instruments and Methods in Physics Research Section A, 1988, 272(1/2): 264-267.
[26] 张篁, 陈德彪, 江孝国, 等. 直线感应加速器用光阴极实验研究[J]. 强激光与粒子束, 2010, 22(3): 583-586.
[27] 刘燕文, 张耿民, 刘惟敏, 等. 激光驱动的钠钾锑光电阴极的光电发射特性[J]. 北京大学学报: 自然科学版, 1996, 32(1): 96-102.
[28] SOMMER A H.Brief history of photoemissive materials[C]//Photodetectors and Power Meters. San Diego, CA, United States: SPIE, 1993, 2022: 2-17.
[29] SOMMER A H.光电发射材料:制备、特性与应用 [M]. 侯洵, 译. 北京:科学出版社, 1979:1-4.
[30] WU C I, KAHN A.Negative electron affinity and electron emission at cesiated GaN and AlN surfaces[J]. Applied Surface Science, 2000, 162: 250-255.
[31] 乔建良, 常本康, 钱芸生, 等. 负电子亲和势GaN光电阴极光谱响应特性研究[J]. 物理学报, 2010 (5): 3577-3582.
[32] ULMER M P, WESSELS B W, SHAHEDIPOUR F, et al.Progress in the fabrication of GaN photocathodes[C]// Photodetectors: Materials and Devices VI. San Jose, CA, United States: SPIE, 2001, 4288: 246-253.
[33] BATES R, CAMPBELL M, DA VIA C, et al.Developments in GaAs pixel detectors for X-ray imaging[C]// 1997 IEEE Nuclear Science Symposium Conference Record. NM, USA:IEEE, 1997: 534-540.
[34] MACHUCA F, LIU Z, SUN Y, et al.Oxygen species in Cs/O activated gallium nitride (GaN) negative electron affinity photocathodes[J]. Journal of Vacuum Science & Technology B, 2003, 21(4): 1863-1869.
[35] 刘燕文, 田宏, 李芬, 等. 碱金属源的制备装置及制备方法: CN202110202475.9[P].2021-06-22.
[36] 刘燕文, 田宏, 李芬, 等. 光电阴极及其制备方法: CN201810512769.X[P].2018-08-31.
[37] 刘燕文, 李芬, 田宏, 等. 一种光电阴极及其制备方法: CN202011316694.1[P].2021-02-26.
[38] 刘燕文, 田宏, 李芬, 等. 钨海绵基体浸铜方法及装置: CN202111095729.8[P].2021-12-14.
[39] 刘燕文, 陆玉新, 张晓林, 等. 多孔钨材料及零件的研究进展[J]. 真空, 2023, 60(2): 1-13.
[40] 刘燕文, 王小霞, 朱虹, 等. 钨海绵基体去铜的方法: CN201310208189.9 [P].2014-03-12.
[41] 刘燕文, 田宏, 陆玉新, 等. 用于浸渍阴极的钨海绵基体的净化[J]. 真空科学与技术学报, 2018, 38(2): 144-149.
[42] ALIVISATOS A P.Semiconductor clusters, nanocrystals, and quantum dots[J]. Science, 1996, 271(5251): 933-937.
[43] VOSSMEYER T, KATSIKAS L, GIERSIG M, et al.CdS nanoclusters: synthesis, characterization, size dependent oscillator strength, temperature shift of the excitonic transition energy, and reversible absorbance shift[J]. The Journal of Physical Chemistry, 1994, 98(31): 7665-7673.
[44] 王国建, 刘燕文, 李芬, 等. 离子束表面处理对光电阴极发射的影响[J]. 物理学报, 2021, 70(21): 356-363.
[45] CURREN A N, LONG K J, JENSEN K A, et al.An effective secondary electron emission suppression treatment for copper MDC electrodes[C]//Proceedings of IEEE International Electron Devices Meeting. Washington, DC, USA: IEEE, 1993: 777-780.
[46] DING M Q, HUANG M G, FENG J J, et al.Ion surface modification for space TWT multistage depressed collectors[J]. Applied Surface Science, 2008, 255(5): 2196-2199.
[47] 刘燕文, 田宏, 朱虹, 等. 电子轰击材料出气性能[J]. 真空科学与技术学报, 2017, 37(4): 363-368.
[48] 崔云康, 张晓兵, 雷威, 等. 电真空器件残气质谱分析和贮存寿命的快速测试研究[J]. 真空科学与技术学报, 2007, 27(1): 80-83.
[49] 刘燕文, 孟宪展, 田宏, 等. 空间行波管极高真空的获得与测量[J]. 真空, 2018, 55(5): 25-28.
[50] 郎兴凯, 贾鹏, 陈泳屹, 等. 窄线宽半导体激光器研究进展[J]. 中国科学: 信息科学, 2019, 49(6): 649-662.
[51] LIU Y, TIAN H, LI F, et al.Effects of nanomaterials on Cs3Sb photocathode emission performance[J]. AIP Advances, 2022, 12(3): 035004.
[52] LIU Y, LI F, TIAN H, et al.Influence of ion beam surface treatment on the emission performance of photocathodes[J]. Nanoscale Advances, 2022, 4(17): 3517-3523.
[1] 刘燕文, 陆玉新, 张晓林, 孟鸣凤, 李芬, 赵恒邦, 王小霞. 多孔钨材料及零件的研究进展*[J]. 真空, 2023, 60(2): 1-13.
[2] 石文奇, 张连正, 陆玉新, 田宏, 朱虹, 赵恒邦, 王小霞, 刘燕文. 光电阴极的研究进展*[J]. 真空, 2020, 57(3): 42-48.
[3] 刘燕文, 田宏, 陆玉新, 石文奇, 朱虹, 李芬, 李云, 谷兵, 王小霞. 用于微波真空电子器件的光电阴极*[J]. 真空, 2019, 56(6): 7-11.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李得天, 成永军, 张虎忠, 孙雯君, 王永军, 孙 健, 李 刚, 裴晓强. 碳纳米管场发射阴极制备及其应用研究[J]. 真空, 2018, 55(5): 1 -9 .
[2] 周彬彬, 张 建, 何剑锋, 董长昆. 基于 CVD 直接生长法的碳纳米管场发射阴极[J]. 真空, 2018, 55(5): 10 -14 .
[3] 柴晓彤, 汪 亮, 王永庆, 刘明昆, 刘星洲, 干蜀毅. 基于 STM32F103 单片机的单泵运行参数数据采集系统[J]. 真空, 2018, 55(5): 15 -18 .
[4] 李民久, 熊 涛, 姜亚南, 贺岩斌, 陈庆川. 基于双管正激式变换器的金属表面去毛刺 20kV 高压脉冲电源[J]. 真空, 2018, 55(5): 19 -24 .
[5] 刘燕文, 孟宪展, 田 宏, 李 芬, 石文奇, 朱 虹, 谷 兵, 王小霞 . 空间行波管极高真空的获得与测量[J]. 真空, 2018, 55(5): 25 -28 .
[6] 徐法俭, 王海雷, 赵彩霞, 黄志婷. 化学气体真空 - 压缩回收系统在环境工程中应用研究[J]. 真空, 2018, 55(5): 29 -33 .
[7] 谢元华, 韩 进, 张志军, 徐成海. 真空输送的现状与发展趋势探讨(五)[J]. 真空, 2018, 55(5): 34 -37 .
[8] 孙立志, 闫荣鑫, 李天野, 贾瑞金, 李 征, 孙立臣, 王 勇, 王 健, 张 强. 放样氙气在大型收集室内分布规律研究[J]. 真空, 2018, 55(5): 38 -41 .
[9] 黄 思 , 王学谦 , 莫宇石 , 张展发 , 应 冰 . 液环压缩机性能相似定律的实验研究[J]. 真空, 2018, 55(5): 42 -45 .
[10] 常振东, 牟仁德, 何利民, 黄光宏, 李建平. EB-PVD 制备热障涂层的反射光谱特性研究[J]. 真空, 2018, 55(5): 46 -50 .