摘要: 随着科技的发展进步,镍基高温合金在航空航天、核电等高精尖领域得到广泛应用,其性能要求也不断提高。熔炼作为镍基高温合金制备过程中的一个关键环节,直接影响合金材料的整体品质和性能,选择适宜的熔炼工艺非常重要。目前常用的熔炼工艺包括真空感应熔炼(VIM)和真空自耗重熔(VAR)等,在实际应用中各有优势和不足之处,需进行合理选择、搭配,精确控制其参数,从而满足镍基高温合金越来越高的熔炼要求。本文对镍基高温合金的熔炼方法进行了详细的分析研究,以期为相关冶炼工作提供参考。
中图分类号: TF644
[1] 王誉程, 连利仙, 邓钥丹, 等. 镍基单晶高温合金熔炼工艺优化[J]. 机械工程材料, 2023, 47(3): 42-47. [2] 杨浩, 王方军, 李采, 等. 镍基高温合金的熔炼工艺研究进展[J]. 特殊钢, 2023, 44(3): 1-9. [3] 马秀萍, 周同金, 刘东方, 等. 真空感应熔炼工艺对镍基高温合金氧氮含量的影响[J]. 铸造, 2019, 68(7):730-733. [4] 李龙飞, 林腾昌, 梁强, 等. C-HRA-3镍基耐热合金真空感应熔炼脱氧脱氮热动力学研究[J]. 铸造技术,2022, 43(7): 559-566. [5] 杨富仲, 张健, 张立峰, 等. 镍基高温合金真空自耗数值模拟[J]. 钢铁研究学报, 2022, 34(9): 916-924. [6] 袁艺, 杨树峰, 刘威, 等. 镍基高温合金真空感应熔炼碳氧反应数值模拟[J]. 中国冶金, 2023, 33(2): 73-79. [7] 李化坤, 马中钢, 逯红果, 等.镍基高温合金真空感应熔炼过程研究[J]. 山东冶金, 2020, 42(5): 33-34. [8] 逯红果, 马中钢, 李化坤, 等. 铸造镍基高温合金重熔工艺的研究进展[J]. 热加工工艺, 2023, 52(13): 1-5. [9] 王林珠, 李翔, 刘录凯, 等. 镍基高温合金中非金属夹杂物成分和特征控制[J]. 中国冶金, 2021, 31(5): 32-38. [10] 王建武, 王宁, 杨树峰. 基于数值模拟的镍基高温合金电渣重熔工艺优化[J].中国冶金, 2022, 32(3): 80-86. [11] 张峰, 游小刚, 谭毅, 等. 熔体过热处理对FGH4096镍基高温合金纯净化行为及凝固组织的影响[J]. 机械工程材料, 2022, 46(11): 9-19. [12] SUGIYAMA T, UTADA S, YOKOKAWA T, et al.Oxidation resistance improvement of Ni-base single-crystal superalloy melted in a CaO crucible[J]. Metallurgical and Materials Transactions,2019, 50:3903-3911. [13] KIATWISARNKIJ N, WANGYAO P, ROJHIRUNSAKOOL T, et al.New alloy development from modified cast Ni-base superalloy GTD-111 with additions of Al, Ni and/or Co prepared by vacuum arc melting process[J]. Materials Testing, 2020, 62(7): 665-671. [14] 赵朋, 杨树峰, 杨曙磊, 等. 镍基高温合金均质化冶炼研究进展[J]. 中国冶金, 2021, 31(4): 1-11. [15] SIDOROV V V, YAKIMOVICH V P, ALEKSEEV V A.Refining complexly alloyed molten nickel from sulfur impurity to less than 1 ppm during vacuum melting[J].Metallurgist, 2020, 64: 61-66. [16] 王妤. 基于专利数据的熔炼法制备镍基高温合金的技术研究及发展分析[J]. 有色冶金节能, 2021, 37(5): 82-88. [17] 刘东方, 姜华, 丁琪, 等. 坩埚材质对K465合金真空感应熔炼过程痕量元素影响规律[J]. 铸造, 2022, 71(12): 1495-1498. [18] 刘录凯, 王林珠, 冉佳乐.镍基高温合金中夹杂物的研究现状及进展[J].山东化工,2021,50(17):90-92. [19] GOEL S, MEHTANI H, YAO S, et al.As-built and post-treated microstructures of an electron beam melting (EBM) produced nickel-based superalloy[J]. Metallurgical and Materials Transactions A,2020,51:6546-6559. [20] 徐海峰,孔建.Sr和Ce对镍基高温合金高温力学及热疲劳性能的影响[J].山东农业大学学报(自然科学版),2020,51(2):320-322. [21] CAMPBELL J.A future for vacuum arc remelting and electroslag remelting: a critical perspective[J].Metals,2023,13(10): 1634. [22] KARIMI-SIBAKI E, PEYHA M, VAKHRUSHEV A, et al.Experimental and numerical investigations of arc plasma expansion in an industrial vacuum arc remelting (VAR) process[J].Scientific Reports, 2022,12:20405. [23] KARIMI-SIBAKI E, KHARICHA A, VAKHRUSHEV A, et al.Numerical modeling and experimental validation of the effect of arc distribution on the as-solidified Ti64 ingot in vacuum arc remelting (VAR) process[J]. Journal of Materials Research and Technology, 2022, 19:183-193. [24] CUI J J, LI B K, LIU Z Q, et al.Numerical investigation of segregation evolution during the vacuum arc remelting process of Ni-based superalloy ingots[J]. Metals,2021,11(12):2046. [25] CIBULA M, KING P, MOTLEY J.Feedback-based control over the spatio-temporal distribution of arcs during vacuum arc remelting via externally applied magnetic fields[J]. Metallurgical and Materials Transactions B, 2020,51: 2483-2491. [26] DESCOTES V, QUATRAVAUX T, BELLOT J P, et al.Titanium nitride (TiN) germination and growth during vacuum arc remelting of a maraging steel[J].Metals,2020 10(4):541. [27] KANO S, YANG H, ANDO M, et al.Effect of solid solution tungsten on the radiation-induced amorphization in bulk M23C6 fabricated by vacuum induction melting[J]. Journal of Nuclear Materials, 2023, 587: 154740. [28] WANG J F, XIA M, WU J L, et al.Nozzle clogging in vacuum induction melting gas atomisation: influence of gas pressure and melt orifice diameter coupling[J]. Powder Metallurgy, 2023, 66(4):281-294. [29] GARCIA-MICHELENA P, CHAMORRO X, HERRERO-DORCA N, et al.Effect of the crucible composition on the inconel 718 vacuum induction melting process efficiency[J]. Journal of Materials Research and Technology,2023, 23: 3351-3361. [30] YILITI Y, DONG G Y, LIU X Y, et al.The high temperature oxidation behavior of a superalloy prepared by vacuum induction melting and electron beam smelting: a comparative study[J]. Journal of Materials Research and Technology,2023,25:6977-6991. [31] MIGAS D, ROSKOSZ S, MOSKAL G, et al.Effect of cooling rate on microstructure, microporosity, and segregation behavior of Co-Al-W alloys prepared by vacuum induction melting[J]. JOM,2022, 74(8):2951-2963. [32] CHEN G Y, YU F H, HOU X, et al.BaZrO3 refractory crucibles for vacuum induction melting of industrial Zr-based bulk metallic glass master alloys with Y addition[J]. Journal of the European Ceramic Society, 2022, 42(8):3644-3651. [33] LEMKE J N, GALLINO F, CRESCI M, et al.Low-hysteresis shape memory alloy scale-up: DSC, XRD and microstructure analysis on heat-treated vacuum induction melted Ni-Ti-Cu-Pd alloys[J]. Metals, 2021, 11(9): 1387. [34] MOHAMMED S H, MOHAMMED M A, ALJUBOURI A A, et al.Influence of copper addition on the properties of equiatomic NiTi shape memory alloy prepared by vacuum induction melting method[J].Journal of Physics: Conference Series,2021,1963: 012017. [35] MEDOVAR L, STOVPCHENKO G, LISOVA L, et al.Features and restrictions of electroslag remelting with silica-bearing slags for lightweight high manganese steel[J]. Steel Research International, 2023,94(11): 2300161. [36] STOVPCHENKO G P, LISOVA L O, MEDOVAR L B, et al.Thermodynamic and physical properties of CaF2-(Al2O3-TiO2-MgO) system slags for electroslag remelting of inconel 18 alloy[J]. Materials Science 2023,58:494-504. [37] DUAN Y, LI B, LIU Z, et al.Numerical study on the effect of low-frequency power supply on desulfurization in the electroslag remelting process[J].Steel Research International, 2023, 94(8): 2300081. [38] AN B, GU Y, JU J T, et al.Fluoride evaporation of low-fluoride CaF2-CaO-Al2O3-MgO-TiO2-(Na2O-K2O) slag for electroslag remelting[J]. Materials, 2023, 16(7): 2777. [39] MA C K, DENG G D, SUN Z H, et al.Cleanliness improvement and microstructure refinement of H13 die steel by laboratory magnetic-controlled electroslag remelting[J]. Journal of Materials Research and Technology, 2023, 24: 2086-2099. [40] AMEZHNOV A V, KUTORKINA V A, LEVKOV L Y, et al.Effect of the deoxidation conditions on the titanium loss during electroslag remelting of corrosion-resistant titanium-alloyed steel under AKF235 flux[J].Metallurgist,2022,66:782-791. [41] CHRISTIAN S, MORITZ E,HERBERT P.Numerical simulations of the molten metal droplet formation in the electroslag remelting process with a rotating electrode[J]. Steel Research International, 2022, 93(12):2100765. [42] SHI H, QIAO H, LI T, et al.Adaptive mesh refinement method for speeding up numerical simulation of electroslag remelting process[J]. Steel Research International, 2021, 92(5): 2000583. [43] JU J T, JI G H, TANG C M, et al.The effect of Li2O on the evaporation and structure of low-fluoride slag for vacuum electroslag remelting[J]. Vacuum, 2021, 183: 109920. |
[1] | 赵宇辉, 赵吉宾, 王志国, 王福雨. Inconel 625镍基高温合金激光增材制造内应力控制方式研究*[J]. 真空, 2020, 57(3): 73-79. |
|