真空 ›› 2025, Vol. 62 ›› Issue (3): 1-8.doi: 10.13385/j.cnki.vacuum.2025.03.01
• 真空冶金与热工 • 下一篇
丘荣生, 李建昌
QIU Rongsheng, LI Jianchang
摘要: 大尺寸碳化硅(SiC)单晶是制备高质量功率器件和射频器件的关键,其主流生长方法为物理气相输运,而生长腔温度场直接影响其生长速率和质量。本文对12寸SiC单晶生长真空感应炉炉内温度场进行数值仿真,研究了感应线圈尺寸和布局参数对温度场的影响。结果表明:降低线圈位置或减小线圈与坩埚高度比,可减小籽晶的径向温度梯度,增加生长腔轴向温度梯度,从而改善晶体质量,并提高晶体生长速率;相比于0 mm的线圈位置,当线圈位于-200 mm时,籽晶径向温度梯度减小约13%,生长腔轴向温度梯度增加8%;随线圈与坩埚高度比从2减小到0.75,籽晶径向温度梯度减小5.4%,生长腔轴向温度梯度增加2.1%;而线圈的匝高占比、直径和匝宽对炉内温度场的影响较小。
中图分类号: O782
[1] CHEN X F, YANG X L, XIE X J, et al.Research progress of large size SiC single crystal materials and devices[J]. Science & Applications, 2023, 12(1):28. [2] KIMOTO T.Bulk and epitaxial growth of silicon carbide[J]. Progress in Crystal Growth and Characterization of Materials, 2016, 62(2):329-351. [3] TIAN J Q, XIE X J, ZHAO L B, et al.Origins and characterization techniques of stress in SiC crystals: a review[J]. Progress in Crystal Growth and Characterization of Materials, 2024, 70(1):100616. [4] KIM J G, JEONG J H, KIM Y, et al.Evaluation of the change in properties caused by axial and radial temperature gradients in silicon carbide crystal growth using the physical vapor transport method[J]. Acta Materialia, 2014, 77: 54-59. [5] BÖTTCHER K, SCHULZ D. Computational study on the SiC sublimation growth[J]. Journal of Crystal Growth, 2002, 237: 1196-1201. [6] 范云. 高纯半绝缘4H-SiC单晶研究进展[J]. 科技创新与生产力,2019(5):69-72. [7] 郭俊敏,郝建民. PVT法碳化硅单晶炉内矢势分布计算[J]. 黑龙江科技信息,2008(8):56. [8] 王英民,毛开礼,徐伟,等. 坩埚在线圈中位置对大直径SiC单晶温度场影响[J]. 电子工艺技术,2011,32(6):360-363. [9] 张群社,陈治明. 感应加热线圈对PVT法生长大直径SiC晶体的影响[J]. 西安理工大学学报,2007,23(1):83-86. [10] 张群社,陈治明,李留臣,等. 不同耦合间隙对大直径SiC晶体生长感应加热系统的影响[J]. 人工晶体学报,2006,35(4):781-784. [11] ZHANG S, FU H, LI T, et al.Study of effect of coil movement on growth conditions of SiC crystal[J]. Materials, 2022, 16(1): 281. [12] YANG N J, SONG B, WANG W J, et al.Control of the temperature field by double induction coils for growth of large-sized SiC single crystals via the physical vapor transport technique[J]. CrystEngComm, 2022, 24(18): 3475-3480. [13] WANG X L, XIE X J, YU W C, et al.Hot-zone design and optimization of resistive heater for SiC single crystal growth[J]. Journal of Materials Science, 2024, 59: 8930-8941. [14] ZHANG Y, WEN X, CHEN N F, et al.Effects of surface size and shape of evaporation area on sic single-crystal growth using the PVT method[J]. Crystals, 2024, 14(2): 118. [15] XU B J, HAN X F, XU S C, et al.Optimization of the thermal field of 8-inch SiC crystal growth by PVT method with "3 separation heater method"[J]. Journal of Crystal Growth, 2023, 614: 127238. [16] 靳丽岩,王毅,王宏杰,等. 基于8英寸的碳化硅单晶生长炉技术[J]. 电子工艺技术,2024,45(3):46-49. [17] 石爱红,孙彩华,陈国玉,等. 碳化硅晶体生长过程的数值模拟[J]. 青海科技,2020,27(5):46-48. [18] CHEN Y F, LIU S C, CHEN S J, et al.Diameter enlargement of SiC bulk single crystals based on simulation and experiment[J]. Materials Science in Semiconductor Processing, 2024, 178:108414. [19] YANG C Z, LIU G X, CHEN C M, et al.Numerical simulation of temperature fields in a three-dimensional SiC crystal growth furnace with axisymmetric and spiral coils[J]. Applied Sciences, 2018, 8(5):705. [20] 卢嘉铮,张辉,郑丽丽,等. 大尺寸电阻加热式碳化硅晶体生长热场设计与优化[J]. 人工晶体学报,2022,51(3):371-384. [21] ZHANG S T, LI T, LI Z X, et al.Thermal field design of a large-sized SiC using the resistance heating PVT method via simulations[J]. Crystals, 2023, 13(12):1638. [22] 张磊磊. 6英寸碳化硅厚晶锭生长热场数值模拟[D]. 西安:西安理工大学, 2021. [23] ZHANG S T, FU G Q, CAI H D, et al.Design and optimization of thermal field for PVT method 8-inch SiC crystal growth[J]. Materials, 2023, 16(2):767. [24] 李鹏程,冯显英,李沛刚,等. 大尺寸碳化硅单晶生长环境研究[J]. 半导体光电,2021,42(5):672-677 [25] 陈彦宇. PVT法碳化硅单晶生长炉的热场仿真与优化研究[D]. 哈尔滨:哈尔滨工业大学, 2022. [26] 谭炳源,郭江,姚栋方,等. 智能计量装置5G通讯技术关键半导体材料碳化硅制造优化[J]. 武汉大学学报(工学版), 2024,57(9):1335-1341. [27] 杨明超,陈治明,封先锋,等. PVT法生长SiC过程生长界面形状对热应力的影响[J]. 人工晶体学报,2012,41(1):24-27. [28] WELLMANN P J.Review of SiC crystal growth technology[J]. Semiconductor Science and Technology, 2018, 33(10): 103001. [29] 付正博. 感应加热与节能:感应加热器(炉)的设计与应用[M]. 北京: 机械工业出版社, 2008. [30] SU J, CHEN X J, LI Y.Numerical design of induction heating in the PVT growth of SiC crystal[J]. Journal of Crystal Growth, 2014, 401:128-132. |
[1] | 陈博龙, 李忠仁, 王颖, 吴逸飞, 苏宁, 宋家兴, 车恩林, 刘君. 大型超导线圈热处理系统温度均匀性研究*[J]. 真空, 2025, 62(3): 33-37. |
[2] | 黄志强, 王振宏, 李心可, 高元, 苏宁, 陈鼎, 车恩林, 代玉博, 莫凡. 磁流体密封技术在基于超导线圈真空热处理装备中的研究进展[J]. 真空, 2024, 61(6): 79-84. |
[3] | 尹翔, 陈世斌, 张艳鹏, 刘旭, 龙连春. 卷绕蒸镀设备偏置线圈设计及参数分析[J]. 真空, 2024, 61(2): 16-21. |
[4] | 刘兴龙, 沈佩, 王光文, 岳向吉, 蔺增. 真空电弧源冷却结构对温度场的影响研究*[J]. 真空, 2022, 59(6): 29-33. |
[5] | 宋青竹, 鄂东梅, 王玲玲, 乔忠路, 张哲魁, 孙足来. 真空电弧炉及凝壳炉的控制技术进展*[J]. 真空, 2022, 59(6): 1-9. |
[6] | 解永强, 靳丽岩, 杨晓东, 王成君, 夏丹, 苏春. 基于半导体器件钎焊技术的温度场研究[J]. 真空, 2021, 58(4): 58-62. |
[7] | 余清洲, 张俊, 李斌, 高明燚, 刘明昆, 柴晓彤, 干蜀毅. 空调散热器真空除油干燥箱温度场优化[J]. 真空, 2021, 58(1): 82-85. |
[8] | 郁欢强, 张俊峰, 丁怀况. 基于减压降温原理的过冷液氮冷却系统研制[J]. 真空, 2018, 55(6): 33-36. |
|