欢迎访问沈阳真空杂志社 Email Alert    RSS服务

真空 ›› 2025, Vol. 62 ›› Issue (3): 1-8.doi: 10.13385/j.cnki.vacuum.2025.03.01

• 真空冶金与热工 •    下一篇

线圈尺寸和布局对12寸碳化硅单晶生长感应炉温度场的影响研究*

丘荣生, 李建昌   

  1. 东北大学 机械工程与自动化学院 真空与流体工程研究中心,辽宁 沈阳 110819
  • 收稿日期:2024-10-21 出版日期:2025-05-25 发布日期:2025-05-23
  • 通讯作者: 李建昌,教授,博导。
  • 作者简介:丘荣生(1991-),男,福建省龙岩市人,硕士研究生。
  • 基金资助:
    * 山东省科技厅重点研发计划(重大科技创新工程)项目(2023CXGC010208)

Effect of Coil Size and Layout on Temperature Field of Induction Furnace for 12-inch Silicon Carbide Single Crystal Growth

QIU Rongsheng, LI Jianchang   

  1. Vacuum and Fluid Engineering Research Center, School of Mechanical Engineering and Automation, Northeastern University, Shenyang 110819, China
  • Received:2024-10-21 Online:2025-05-25 Published:2025-05-23

摘要: 大尺寸碳化硅(SiC)单晶是制备高质量功率器件和射频器件的关键,其主流生长方法为物理气相输运,而生长腔温度场直接影响其生长速率和质量。本文对12寸SiC单晶生长真空感应炉炉内温度场进行数值仿真,研究了感应线圈尺寸和布局参数对温度场的影响。结果表明:降低线圈位置或减小线圈与坩埚高度比,可减小籽晶的径向温度梯度,增加生长腔轴向温度梯度,从而改善晶体质量,并提高晶体生长速率;相比于0 mm的线圈位置,当线圈位于-200 mm时,籽晶径向温度梯度减小约13%,生长腔轴向温度梯度增加8%;随线圈与坩埚高度比从2减小到0.75,籽晶径向温度梯度减小5.4%,生长腔轴向温度梯度增加2.1%;而线圈的匝高占比、直径和匝宽对炉内温度场的影响较小。

关键词: 12英寸SiC单晶, 感应加热, 线圈, 物理气相输运法, 温度场

Abstract: Large-size silicon carbide (SiC) single crystal is the key to fabricate high-quality power devices and radio frequency devices. The main growth technique is physical vapor transport method, in which the chamber temperature field greatly affects the crystal growth rate and quality. In this paper, the influence of induction coil size and layout parameters is numerically studied to optimize the temperature field of induction furnace for the 12-inch SiC single crystal growth. The results show that reducing the coil position or decreasing the coil/crucible height ratio can reduce the radial temperature gradient of the seed crystal, and increase the axial temperature gradient of the growth chamber. It can thus improve the quality of single crystal and increase the growth rate. Compared to the coil position at 0 mm, positioning the coil at -200 mm reduces the radial temperature gradient of the seed crystal by approximately 13%, while increases the axial temperature gradient in the growth cavity by 8%. When the coil / crucible height ratio decreases from 2 to 0.75, the radial temperature gradient of the seed crystal decreases by about 5.4%, and the axial temperature gradient of the growth cavity increases by 2.1%. However, the turn-height to coil-distance proportion, diameter and turn width of the coil have little influence on the temperature field in the furnace.

Key words: 12-inch SiC single crystal, induction heating, coil, physical vapor transport method, temperature field

中图分类号:  O782

[1] CHEN X F, YANG X L, XIE X J, et al.Research progress of large size SiC single crystal materials and devices[J]. Science & Applications, 2023, 12(1):28.
[2] KIMOTO T.Bulk and epitaxial growth of silicon carbide[J]. Progress in Crystal Growth and Characterization of Materials, 2016, 62(2):329-351.
[3] TIAN J Q, XIE X J, ZHAO L B, et al.Origins and characterization techniques of stress in SiC crystals: a review[J]. Progress in Crystal Growth and Characterization of Materials, 2024, 70(1):100616.
[4] KIM J G, JEONG J H, KIM Y, et al.Evaluation of the change in properties caused by axial and radial temperature gradients in silicon carbide crystal growth using the physical vapor transport method[J]. Acta Materialia, 2014, 77: 54-59.
[5] BÖTTCHER K, SCHULZ D. Computational study on the SiC sublimation growth[J]. Journal of Crystal Growth, 2002, 237: 1196-1201.
[6] 范云. 高纯半绝缘4H-SiC单晶研究进展[J]. 科技创新与生产力,2019(5):69-72.
[7] 郭俊敏,郝建民. PVT法碳化硅单晶炉内矢势分布计算[J]. 黑龙江科技信息,2008(8):56.
[8] 王英民,毛开礼,徐伟,等. 坩埚在线圈中位置对大直径SiC单晶温度场影响[J]. 电子工艺技术,2011,32(6):360-363.
[9] 张群社,陈治明. 感应加热线圈对PVT法生长大直径SiC晶体的影响[J]. 西安理工大学学报,2007,23(1):83-86.
[10] 张群社,陈治明,李留臣,等. 不同耦合间隙对大直径SiC晶体生长感应加热系统的影响[J]. 人工晶体学报,2006,35(4):781-784.
[11] ZHANG S, FU H, LI T, et al.Study of effect of coil movement on growth conditions of SiC crystal[J]. Materials, 2022, 16(1): 281.
[12] YANG N J, SONG B, WANG W J, et al.Control of the temperature field by double induction coils for growth of large-sized SiC single crystals via the physical vapor transport technique[J]. CrystEngComm, 2022, 24(18): 3475-3480.
[13] WANG X L, XIE X J, YU W C, et al.Hot-zone design and optimization of resistive heater for SiC single crystal growth[J]. Journal of Materials Science, 2024, 59: 8930-8941.
[14] ZHANG Y, WEN X, CHEN N F, et al.Effects of surface size and shape of evaporation area on sic single-crystal growth using the PVT method[J]. Crystals, 2024, 14(2): 118.
[15] XU B J, HAN X F, XU S C, et al.Optimization of the thermal field of 8-inch SiC crystal growth by PVT method with "3 separation heater method"[J]. Journal of Crystal Growth, 2023, 614: 127238.
[16] 靳丽岩,王毅,王宏杰,等. 基于8英寸的碳化硅单晶生长炉技术[J]. 电子工艺技术,2024,45(3):46-49.
[17] 石爱红,孙彩华,陈国玉,等. 碳化硅晶体生长过程的数值模拟[J]. 青海科技,2020,27(5):46-48.
[18] CHEN Y F, LIU S C, CHEN S J, et al.Diameter enlargement of SiC bulk single crystals based on simulation and experiment[J]. Materials Science in Semiconductor Processing, 2024, 178:108414.
[19] YANG C Z, LIU G X, CHEN C M, et al.Numerical simulation of temperature fields in a three-dimensional SiC crystal growth furnace with axisymmetric and spiral coils[J]. Applied Sciences, 2018, 8(5):705.
[20] 卢嘉铮,张辉,郑丽丽,等. 大尺寸电阻加热式碳化硅晶体生长热场设计与优化[J]. 人工晶体学报,2022,51(3):371-384.
[21] ZHANG S T, LI T, LI Z X, et al.Thermal field design of a large-sized SiC using the resistance heating PVT method via simulations[J]. Crystals, 2023, 13(12):1638.
[22] 张磊磊. 6英寸碳化硅厚晶锭生长热场数值模拟[D]. 西安:西安理工大学, 2021.
[23] ZHANG S T, FU G Q, CAI H D, et al.Design and optimization of thermal field for PVT method 8-inch SiC crystal growth[J]. Materials, 2023, 16(2):767.
[24] 李鹏程,冯显英,李沛刚,等. 大尺寸碳化硅单晶生长环境研究[J]. 半导体光电,2021,42(5):672-677
[25] 陈彦宇. PVT法碳化硅单晶生长炉的热场仿真与优化研究[D]. 哈尔滨:哈尔滨工业大学, 2022.
[26] 谭炳源,郭江,姚栋方,等. 智能计量装置5G通讯技术关键半导体材料碳化硅制造优化[J]. 武汉大学学报(工学版), 2024,57(9):1335-1341.
[27] 杨明超,陈治明,封先锋,等. PVT法生长SiC过程生长界面形状对热应力的影响[J]. 人工晶体学报,2012,41(1):24-27.
[28] WELLMANN P J.Review of SiC crystal growth technology[J]. Semiconductor Science and Technology, 2018, 33(10): 103001.
[29] 付正博. 感应加热与节能:感应加热器(炉)的设计与应用[M]. 北京: 机械工业出版社, 2008.
[30] SU J, CHEN X J, LI Y.Numerical design of induction heating in the PVT growth of SiC crystal[J]. Journal of Crystal Growth, 2014, 401:128-132.
[1] 陈博龙, 李忠仁, 王颖, 吴逸飞, 苏宁, 宋家兴, 车恩林, 刘君. 大型超导线圈热处理系统温度均匀性研究*[J]. 真空, 2025, 62(3): 33-37.
[2] 黄志强, 王振宏, 李心可, 高元, 苏宁, 陈鼎, 车恩林, 代玉博, 莫凡. 磁流体密封技术在基于超导线圈真空热处理装备中的研究进展[J]. 真空, 2024, 61(6): 79-84.
[3] 尹翔, 陈世斌, 张艳鹏, 刘旭, 龙连春. 卷绕蒸镀设备偏置线圈设计及参数分析[J]. 真空, 2024, 61(2): 16-21.
[4] 刘兴龙, 沈佩, 王光文, 岳向吉, 蔺增. 真空电弧源冷却结构对温度场的影响研究*[J]. 真空, 2022, 59(6): 29-33.
[5] 宋青竹, 鄂东梅, 王玲玲, 乔忠路, 张哲魁, 孙足来. 真空电弧炉及凝壳炉的控制技术进展*[J]. 真空, 2022, 59(6): 1-9.
[6] 解永强, 靳丽岩, 杨晓东, 王成君, 夏丹, 苏春. 基于半导体器件钎焊技术的温度场研究[J]. 真空, 2021, 58(4): 58-62.
[7] 余清洲, 张俊, 李斌, 高明燚, 刘明昆, 柴晓彤, 干蜀毅. 空调散热器真空除油干燥箱温度场优化[J]. 真空, 2021, 58(1): 82-85.
[8] 郁欢强, 张俊峰, 丁怀况. 基于减压降温原理的过冷液氮冷却系统研制[J]. 真空, 2018, 55(6): 33-36.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!