欢迎访问沈阳真空杂志社 Email Alert    RSS服务

真空 ›› 2022, Vol. 59 ›› Issue (6): 29-33.doi: 10.13385/j.cnki.vacuum.2022.06.05

• 薄膜 • 上一篇    下一篇

真空电弧源冷却结构对温度场的影响研究*

刘兴龙1,2, 沈佩1,3, 王光文1, 岳向吉1, 蔺增1,4   

  1. 1.东北大学机械工程与自动化学院,辽宁 沈阳 110819;
    2.沈阳添和毅科技有限责任公司,辽宁 沈阳 110027;
    3.泰安东大新材表面技术有限公司,山东 泰安 271024;
    4.辽宁省植入器械与界面科学重点实验室,辽宁 沈阳 110819
  • 收稿日期:2022-01-11 出版日期:2022-11-25 发布日期:2022-12-05
  • 通讯作者: 蔺增,教授。
  • 作者简介:刘兴龙(1990-),男,山东省临朐人,博士。
  • 基金资助:
    *中央高校基本科研业务费交叉融合项目(N2003009)

Influence of Cooling Structure on Vacuum Arc Source Temperature

LIU Xing-long1,2, SHEN Pei1,3, WANG Guang-wen1, YUE Xiang-ji1, LIN Zeng1,4   

  1. 1. School of Mechanical Engineering & Automation, Northeastern University, Shenyang 110819, China;
    2. Surfacility (Shenyang) Technology Limited, Shenyang 110027, China;
    3. NeuMat (Taian) Surface Technology Limited, Taian 271024, China;
    4. Key Laboratory of Implant Device and Interface Science of Liaoning Province, Shenyang 110819, China
  • Received:2022-01-11 Online:2022-11-25 Published:2022-12-05

摘要: 真空电弧离子镀技术是工业界使用最为广泛的表面处理技术之一。在电弧离子镀实际应用过程中,所制备涂层的表面大颗粒仍然是困扰高端制造的一大难题,造成这一现象的根本原因是靶材表面局部过热产生的液滴飞溅。减少液滴产生的有效方法有很多,除降低放电功率密度、提高弧斑运动速度等热端控制技术之外,还包括加强靶材的冷却等。本文将新型冷却结构和弧斑运动引入弧源的数值模型,对弧源内部冷却水的流场和靶材表面的温度场进行模拟分析,研究了不同边界条件下弧源温度场的变化规律。本文的研究结果对真空镀膜机设计与工艺开发具有一定的指导作用。

关键词: 弧源, 冷却结构, 温度场, 靶面温度

Abstract: Vacuum arc ion plating is one of the most extensive surface treatment technologies in use now. However, in the actual industrial application, large surface particle of the prepared coating is still a major problem that plagues the advanced manufacturing. The reason lies on that the target is overheated, and then molten pool is formed to cause solution splash. The effective methods for reducing the occurrence of droplets include reducing the discharge power density, increasing the arc motion speed, as well as enhancing the cooling measures. In this paper, a numerical model was established for the arc source including new cooling structure and arc spot motion. The flow field of the cooling water inside the arc source and the temperature field of the arc source surface were simulated and analyzed, and the variation of the arc source under different boundary conditions was analyzed. The results in this paper may be helpful for the design of vacuum coating machine as well as the process development.

Key words: arc source, cooling structure, temperature field, target surface temperature

中图分类号: 

  • TB43
[1] TAKIKAWA H, TANOUE H.Review of cathodic arc deposition for preparing droplet-free thin films[J]. IEEE Transactions on Plasma Science, 2007, 35(4): 992-999.
[2] LANG W C, XIAO J Q, GONG J, et al.Study on cathode spot motion and macroparticles reduction in axisymmetric magnetic field-enhanced vacuum arc deposition[J]. Vacuum, 2010, 84(9): 1111-1117.
[3] 樊勇. 真空阴极弧离子镀的发展及应用[J]. 新技术新工艺, 2008(4): 93-96.
[4] 李彤, 刘艳明, 王晨, 等. 硬质涂层的研究热点及面临问题[J]. 真空科学与技术学报, 2018, 38(9): 755-763.
[5] 杨林生, 王君, 陈长琦. 硬质薄膜技术的最新发展[J]. 真空, 2009, 46(6): 35-39.
[6] 王福贞, 刘欢, 那日松. 离子镀膜技术的进展[J]. 真空, 2014(5): 1-8.
[7] 王福贞. 阴极电弧离子镀膜技术的进步[J]. 真空与低温, 2020, 26(2): 87-95.
[8] AKSYONOV D S, AKSENOV I I, ZADNEPROVSKY Y A, et al.Vacuum-arc plasma source with controlled cathode spot motion[J]. Problems of Atomic Science and Technology, 2008, 6: 210-212.
[9] HANTZSCHE E.Mysteries of the arc cathode spot: a retrospective glance[J]. IEEE Transactions on Plasma Science, 2003, 31(5): 799-808.
[10] JÜTTNER B. On the variety of cathode craters of vacuum arcs, and the influence of the cathode temperature[J]. Physica B+C, 1982, 114(2): 255-261.
[11] LI L H, ZHU Y, HE F S, et al.Control of cathodic arc spot motion under external magnetic field[J]. Vacuum, 2013, 91: 20-23.
[12] LANG W C.Design of a dynamic magnetic field steered cathodic arc source in arc ion plating[J]. Advanced Materials Research, 2011, 340: 167-172.
[13] AKSENOV I I, STREL"NITSKIJ V E, VASILYEV V V, et al. Efficiency of magnetic plasma filters[J]. Surface & Coatings Technology, 2003, 163: 118-127.
[14] WANG S, LIN Z, QIAO H, et al.Influence of a scanning radial magnetic field on macroparticle reduction of arc ion-plated films[J]. Coatings, 2018, 8(2): 49.
[15] 乔宏. 阴极电弧源的磁场优化设计及应用研究[D]. 沈阳: 东北大学, 2018.
[16] 毕凯, 陈大民, 李洪文. 电弧离子镀电弧源深入研究[J]. 真空, 2018, 55(3): 30-33.
[17] MARTIN R W, ZILM K W.Variable temperature system using vortex tube cooling and fiber optic temperature measurement for low temperature magic angle spinning NMR[J]. Journal of Magnetic Resonance, 2004, 168(2): 202-209.
[18] KUZNETSOV V G, BABUSHKINA E S.Mathematical modeling of the temperature distribution under the cathode spot of the vacuum arc[J]. Journal of Physics: Conference Series, 2016, 729(1): 012003.
[19] KIM J K, LEE K R, EUN K Y, et al.Effect of magnetic field structure near cathode on the arc spot stability of filtered vacuum arc source of graphite[J]. Surface & Coatings Technology, 2000, 124(2): 135-141.
[20] SONG X, WANG Q, LIN Z, et al.Control of vacuum arc source cathode spots contraction motion by changing electromagnetic field[J]. Plasma Science & Technology, 2018, 20(2): 115-121.
[1] 解永强, 靳丽岩, 杨晓东, 王成君, 夏丹, 苏春. 基于半导体器件钎焊技术的温度场研究[J]. 真空, 2021, 58(4): 58-62.
[2] 余清洲, 张俊, 李斌, 高明燚, 刘明昆, 柴晓彤, 干蜀毅. 空调散热器真空除油干燥箱温度场优化[J]. 真空, 2021, 58(1): 82-85.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李得天, 成永军, 张虎忠, 孙雯君, 王永军, 孙 健, 李 刚, 裴晓强. 碳纳米管场发射阴极制备及其应用研究[J]. 真空, 2018, 55(5): 1 -9 .
[2] 周彬彬, 张 建, 何剑锋, 董长昆. 基于 CVD 直接生长法的碳纳米管场发射阴极[J]. 真空, 2018, 55(5): 10 -14 .
[3] 李志胜. 空间环境下超大型红外定标用辐射屏蔽门的研制[J]. 真空, 2018, 55(5): 66 -70 .
[4] 郑 列, 李 宏. 200kV/2mA 连续可调直流高压发生器的设计[J]. 真空, 2018, 55(6): 10 -13 .
[5] 柴晓彤, 汪 亮, 王永庆, 刘明昆, 刘星洲, 干蜀毅. 基于 STM32F103 单片机的单泵运行参数数据采集系统[J]. 真空, 2018, 55(5): 15 -18 .
[6] 孙立志, 闫荣鑫, 李天野, 贾瑞金, 李 征, 孙立臣, 王 勇, 王 健, 张 强. 放样氙气在大型收集室内分布规律研究[J]. 真空, 2018, 55(5): 38 -41 .
[7] 黄 思 , 王学谦 , 莫宇石 , 张展发 , 应 冰 . 液环压缩机性能相似定律的实验研究[J]. 真空, 2018, 55(5): 42 -45 .
[8] 纪 明, 孙 亮, 杨敏勃. 一种用于对月球样品自动密封锁紧的设计[J]. 真空, 2018, 55(6): 24 -27 .
[9] 李民久, 熊 涛, 姜亚南, 贺岩斌, 陈庆川. 基于双管正激式变换器的金属表面去毛刺 20kV 高压脉冲电源[J]. 真空, 2018, 55(5): 19 -24 .
[10] 刘燕文, 孟宪展, 田 宏, 李 芬, 石文奇, 朱 虹, 谷 兵, 王小霞 . 空间行波管极高真空的获得与测量[J]. 真空, 2018, 55(5): 25 -28 .