欢迎访问沈阳真空杂志社 Email Alert    RSS服务

真空 ›› 2019, Vol. 56 ›› Issue (6): 7-11.doi: 10.13385/j.cnki.vacuum.2019.06.02

• • 上一篇    下一篇

用于微波真空电子器件的光电阴极*

刘燕文1, 田宏1, 陆玉新2, 石文奇1, 朱虹1, 李芬1, 李云1, 谷兵1, 王小霞1   

  1. 1.中国科学院电子学研究所 北京 100190;
    2.天津交通职业学院 天津 300110
  • 收稿日期:2019-06-04 出版日期:2019-11-25 发布日期:2019-12-03
  • 作者简介:刘燕文(1964-),男,天津市人,博士,副研究员。
  • 基金资助:
    国家自然科学基金项目(批准号:61771454)、总装预研基金项目(批准号31512010404-1)

Photocathode Used as Microwave Vacuum Electronic Devices

LIU Yan-wen1, TIAN Hong1, LU Yu-xin2, SHI Wen-qi1, ZHU Hong1, LI Fen1, LI Yun1, GU Bing1, WANG Xiao-xia1   

  1. 1.The Institute of Electronics, Chinese Academy of Science, Beijing100080, China;
    2.Tianjin Traffic Vocational Institute, Tianjin 300110, China
  • Received:2019-06-04 Online:2019-11-25 Published:2019-12-03

摘要: 为了满足高频率、小型化真空微波器件的需求,寻找合适的阴极材料和激光系统,开展了用于微波真空电子器件的光阴极研究,提出了一体化的光电阴极制备方法,通过加热具有扩散阻挡层的发射物质存储室,提供受控的光电发射层,以代替活性物质蒸发损失,从而延长阴极的使用寿命,并可以从中毒、暴露大气过程中恢复。在超高真空系统内制备了Cs3Sb光电阴极,利用连续激光器测得其量子效率为0.145% (0.53μm ),在能量为0.37W的连续激光照射下,测得发射电流密度达29.2mA/cm2。光电阴极在高强度的激光作用下被损坏后,重新加热激活,光电发射可以得到一定的恢复并长时间稳定,说明这种光电阴极具有可重复激活的特点,有望成为微波真空电子器件的理想电子源。

关键词: 微波真空电子器件, 光电阴极, 激光驱动, 量子效率

Abstract: To meet the needs of high-frequency, miniaturized vacuum microwave devices, to find suitable cathode materials and laser systems, the photocathode for microwave vacuum electronic devices were studied. The photocathode with diffusion barrier was prepared, by heating the layer of emissive material storage chamber to provides a controlled photoemissive layer for replacing the evaporation loss of the active material, thereby extending the life of the cathode and recovering from poisoning and exposure to the atmosphere. The Cs3Sb photocathode was prepared in an ultra-high vacuum system. The quantum efficiency is about 0.145% at the wavelength of 532 nm, when the photoelectric is illuminated by the continuous laser with an energy of 0.37 W, a current density of 29.2 mA/cm2 of the photoemission can be obtained. If the photocathode is damaged by the high-intensity laser, it can be reheated and activated. The photoelectric emission can be restored to a certain degree and stabilized for a long time. This photocathode has the characteristics of reproducible activation and is expected to be ideal electronic source for microwave vacuum electronic devices.

Key words: microwave vacuum electronic devices, photocathode, driven by laser, emission properties

中图分类号: 

  • TN107
[1] 廖复疆. 大功率微波真空电子学技术进展[J].电子学报, 2006, 313(3):513-516.
[2] Shin Y M,Barnett L R,Gamzina D,Lhmann N C,Terahertz vacuum electronic circuits fabricated by UV lithographic molding and reactive ion etching[J].Appl. Phys. Lett., 2009, 95(18):181 505- 1-181 505-3.
[3] Chu K R.The electron cycltron maser[J]. Rev.Mod.Phs,2004,76:2489-540.
[4] Sirigiri J R,Shaprio, M A and Temkin R J, High power 140GHz quasi-optical gyrotron travelling wave amplifier[J].Phys. Rev.lett., 2003, 90(25):56302.
[5] 刘燕文,田宏,支取发射电流对热阴极温度影响的研究[J].中国科学E,2008,(9):1515-1520.
[6] Liu Y W, Tian Hong, The temperature variation of a thermionic cathode during electron emission[J]. Sciende in China E,2008,51(9):1497-1501.
[7] 王小霞,廖显恒,罗积润,亚微米电子发射材料的合成及发射性能[J].物理学报,2008,57(1):1924-1929.
[8] Wang X X, Liao X H, Zhao Q L, et al.Performance of an Oxide cathode prepared from submierometer carbomates[J]. IEEE.Trans.Electr.Devices,2011, 58(9):3195-3199.
[9] Gaertner G, Janiel P, Raasch D.Direct Determination of Electrical conductivity of Oxide cathode[J]. Appl. Surf. Sci,2002,201:35-40.
[10] Raju R S, Maloney C E, Characterization of an Impregnated Scandated Cathode Using a Semiconductor Model[J]. IEEE.Trans.Electr.Devices,1994,41:2460-2467.
[11] Wang J S, Liu W.A study of scadndia-dopedresscathode[J]. IEEE.Trans.Electr.Devices,2009,56:799-804.
[12] Melinikva I P.Correlation of emission capability and longevity of dispenser cathodes with characterstics of tungsten powders[J].Appl. Surf. Sci.,2003, 215 :59-64.
[13] 刘燕文,田宏,陆玉新,用于浸渍阴极的钨海绵基体的净化[J]. 真空科学与技术学报, 2018, 38(2)144-149.
[14] 刘燕文,刘胜英,田宏. 用于空间行波管高效覆膜阴极组件的研究[J].真空科学与技术学报,2006,26(3):240-242.
[15] Barika R K, Beraa A, Rajub RS.Development of alloy-film coated dispenser cathode for terahertz vacuum electron devices application[J]. Appl.Surf. Sci. 2013,276:817-822.
[16] Isagawa S.Application of M-type cathode to hig-power cw klystron[J]. Appl. Surf. Sci. ,1999,146:88-96.
[17] Liu Y W, Tian H, Han Y.Study on the emission properties of the impregnated cathode with nanoparticle films[J]. IEEE Transactions on Electron Devices, 2012, 59:3618-3624.
[18] Zhu J, Wang S L, Xie S H, et al.Hexagonal single crystal growth of WO3 nanorodsalong a [110] axis with enhanced adsorption capacity[J]. Chem Commun, 2011, 47:4403-4405.
[19] Wang H L, Hao Q L, Yang X J, et al.A nanostructured graphene/polyaniline hybrid material for supercapacitors[J]. Nanoscale, 2010,2:2164-2170.
[20] Wang S L, He Y H, Liu X L, et al.Large-scale synthesis of tungsten single-crystalmicrotubes via vapor-deposition process[J]. J Cryst Growth, 2011,316:137-144.
[21] Whaley D, Duggal R, Armstrong C, et al.High Average Power Field Emitter Cathode and Testbed For X/Ku-Band Cold Cathode TWT[C].IVEC2013, 161-162,Paris,France,May.
[22] 刘燕文,张耿民. 激光驱动的钠钾锑光电阴极的发射限制特性[J].北京大学学报,1996,32:96-101.
[23] Somer A H.光电发射材料[M]. 北京:科学出版社,1979.
[24] Lee C H.Electron emission of over 200A/cm2 from a pulsed0laser irradiation photocathode[J]. IEEE Trans. Nucl.Sci.1985,32(5):3045-3047.
[25] 刘燕文,张根民. 钠钾锑光电阴极的稳定性研究[J]. 中国激光,1996,23:255-259.
[26] Liu Y W, Zhang G M.The high field enhancement of photoemission fome Na2KSb photo-cathodes[J]. Nucl.Instr.meth.phys.Res.1996,A376:146-147.
[27] 张耿民,吴全德. BaO 晶体中的Ba 超微粒子[J]. 北京大学学报,1997,33:97-103.
[28] 张篁,陈德彪. 直线感应加速器用光阴极实验研究[J]. 强激光与粒子,2010,22,583-586.
[29] 常本康. NEA GaN和GaAs光电阴极的比较[J]. 红外技术,2017,12:1073-1077.
[30] 刘燕文,田宏,石文奇,等. 用于微波真空电子器件的光电阴极及其制备方法(P),发明专利,201910512769.x.
[31] 刘燕文,孟宪展,田宏,等. 空间行波管极高真空的获得与测量[J]. 真空, 2018, 55(5):25-28.
[1] 刘燕文, 孟宪展, 田 宏, 李 芬, 石文奇, 朱 虹, 谷 兵, 王小霞 . 空间行波管极高真空的获得与测量[J]. 真空, 2018, 55(5): 25-28.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李得天, 成永军, 张虎忠, 孙雯君, 王永军, 孙 健, 李 刚, 裴晓强. 碳纳米管场发射阴极制备及其应用研究[J]. 真空, 2018, 55(5): 1 -9 .
[2] 周彬彬, 张 建, 何剑锋, 董长昆. 基于 CVD 直接生长法的碳纳米管场发射阴极[J]. 真空, 2018, 55(5): 10 -14 .
[3] 李志胜. 空间环境下超大型红外定标用辐射屏蔽门的研制[J]. 真空, 2018, 55(5): 66 -70 .
[4] 郑 列, 李 宏. 200kV/2mA 连续可调直流高压发生器的设计[J]. 真空, 2018, 55(6): 10 -13 .
[5] 柴晓彤, 汪 亮, 王永庆, 刘明昆, 刘星洲, 干蜀毅. 基于 STM32F103 单片机的单泵运行参数数据采集系统[J]. 真空, 2018, 55(5): 15 -18 .
[6] 孙立志, 闫荣鑫, 李天野, 贾瑞金, 李 征, 孙立臣, 王 勇, 王 健, 张 强. 放样氙气在大型收集室内分布规律研究[J]. 真空, 2018, 55(5): 38 -41 .
[7] 黄 思 , 王学谦 , 莫宇石 , 张展发 , 应 冰 . 液环压缩机性能相似定律的实验研究[J]. 真空, 2018, 55(5): 42 -45 .
[8] 纪 明, 孙 亮, 杨敏勃. 一种用于对月球样品自动密封锁紧的设计[J]. 真空, 2018, 55(6): 24 -27 .
[9] 李民久, 熊 涛, 姜亚南, 贺岩斌, 陈庆川. 基于双管正激式变换器的金属表面去毛刺 20kV 高压脉冲电源[J]. 真空, 2018, 55(5): 19 -24 .
[10] 刘燕文, 孟宪展, 田 宏, 李 芬, 石文奇, 朱 虹, 谷 兵, 王小霞 . 空间行波管极高真空的获得与测量[J]. 真空, 2018, 55(5): 25 -28 .