欢迎访问沈阳真空杂志社 Email Alert    RSS服务

真空 ›› 2024, Vol. 61 ›› Issue (3): 13-19.doi: 10.13385/j.cnki.vacuum.2024.03.03

• 真空获得与设备 • 上一篇    下一篇

表面特性对棘齿型Knudsen泵气体分离特性影响的模拟研究*

韩峰, 张志军, 张世伟, 王晓伟   

  1. 东北大学机械工程与自动化学院,辽宁 沈阳 110819
  • 收稿日期:2023-08-20 发布日期:2024-06-04
  • 通讯作者: 张世伟,教授,博导;张志军,教授,博导。
  • 作者简介:韩 峰(1993-),男,山东东营人,博士研究生。
  • 基金资助:
    * 国家自然科学基金资助项目(U20A20292); 中国航空工业空气动力研究院高超声速气动力与热技术重点实验室基金资助; 北京控制工程研究所先进空间推进技术实验室和北京市高效能及绿色宇航推进工程技术研究中心开放基金项目(LabASP-2020-02); 中国科学院环境光学与技术重点实验室开放基金(2005DP173065-2022-02)

Simulation Study of the Effect of Surface Properties on Gas Separation Characteristics for Ratchet-type Knudsen Pumps

HAN Feng, ZHANG Zhi-jun, ZHANG Shi-wei, WANG Xiao-wei   

  1. School of Mechanical Engineering and Automation, Northeastern University, Shenyang 110819, China
  • Received:2023-08-20 Published:2024-06-04

摘要: Knudsen泵作为一种微型泵,在微机电系统(MEMS)中具有广泛应用。本文提出了一种具有不同表面反射系数的棘齿型Knudsen泵,通过直接模拟蒙特卡罗(DSMC)方法对该泵内He-Xe混合气体流动特性进行了数值模拟研究。结果表明:表面反射特性对Knudsen泵内的流场特性和气体分离特性影响巨大,不同的表面反射特性导致了Knudsen泵内不同的热驱流动机理;三角形倾斜边的αn=σt=0时Knudsen泵内主要热驱流动为辐射流,有利于气体分离,而αn=σt=1时Knudsen泵内主要热驱流动为热边缘流,对气体分离没有明显有利作用;三角形倾斜边的αn=σt=0时He和Xe的速度和扩散速度在三角形棘齿上顶点附近差异最大,而αn=σt=1时在三角形棘齿左侧顶点附近差异最大;越轻的气体流动速度和扩散速度越快。本文可为实际工程应用中微型气体分离装置的设计和生产提供理论依据。

关键词: Knudsen泵, 气体分离, 表面特性, 热驱流动, 棘齿型微通道, DSMC方法, 微机电系统(MEMS)

Abstract: The Knudsen pump, a type of micro-pump, is widely used in microelectromechanical systems (MEMS). The paper proposes a ratchet-type Knudsen pump with varied surface accommodation coefficients. The gas flow characteristics of this pump are simulated numerically by using the direct simulation Monte Carlo (DSMC) method. The results show that surface accommodation characteristics significantly influence the flow field and gas separation features. Distinct surface reflection characteristics give rise to varying thermally induced flow mechanisms within the Knudsen pump. The primary thermally induced flow in the Knudsen pump at αn=σt=0 of the inclined edge of the triangle is the radiometric flow, which is advantageous for gas separation. At αn=σt=1 of the triangular inclined edge, the primary thermally induced flow is the thermal edge flow, which is not clearly advantageous for gas separation. The velocity difference and diffusion velocity difference between He and Xe are greatest near the upper vertex of triangular ratchet at αn=σt=0 of the triangular inclined edge, while the differences are greatest near the left vertex of triangular ratchet at αn=σt=1. Moreover, the flow velocity and diffusive velocity increase as the gas becomes lighter. This paper may establish a theoretical foundation for creating and producing miniature gas separation devices applicable in practical engineering contexts.

Key words: Knudsen pump, gas separation, surface properties, thermally induced flow, ratchet-type microchannels, DSMC method, MEMS

中图分类号:  TB71+1;O356

[1] LOTFIAN A, ROOHI E.Radiometric flow in periodically patterned channels: fluid physics and improved configurations[J]. Journal of Fluid Mechanics, 2019, 860: 544-576.
[2] BAIER T, HARDT S, SHAHABI V, et al.Knudsen pump inspired by Crookes radiometer with a specular wall[J]. Physical Review Fluids, 2017, 2(3): 033401.
[3] 王晓伟, 张志军, 张文青, 等. 矩形微通道Knudsen泵中的气体传输特性研究[J]. 真空与低温, 2020, 26(1): 73-81.
[4] 王晓伟, 武越, 杜春林, 等. 气-面相互作用对均匀加热微梁系统中稀薄气体流动特性影响的数值研究[J]. 航天器环境工程, 2021, 38(6): 640-647.
[5] 韩峰, 王晓伟, 张文青, 等. 四边形阵列的微通道型Knudsen泵内热驱流动的DSMC数值模拟优化[J]. 真空科学与技术学报, 2023, 43(3): 238-244.
[6] GUPTA N K, GIANCHANDANI Y B.Porous ceramics for multistage Knudsen micropumps-modeling approach and experimental evaluation[J]. Journal of Micromechanics and Microengineering, 2011, 21(9): 95014-95029.
[7] PHARAS K, MCNAMARA S.Knudsen pump driven by a thermoelectric material[J]. Journal of Micromechanics and Microengineering, 2010, 20(12): 125032-125040.
[8] GERDROODBARY M B, GANJI D D, SHIRYANPOUR I, et al.Mass analysis of CH4/SO2 gas mixture by low-pressure MEMS gas sensor[J]. Journal of Natural Gas Science and Engineering, 2018, 53:317-328.
[9] HASSANVAND A, GERDROODBARY M B, MORADI R, et al.Application of Knudsen thermal force for detection of inert gases[J]. Results in Physics, 2018,9: 351-358.
[10] HAN F, WANG X, ZHAO F, et al.Numerical investigation of gas separation via thermally induced flows in ratchet-like patterned microchannels[J]. International Journal of Thermal Sciences, 2022,172:107280.
[11] HAN F, WANG X, ZHANG W, et al.Gas separation simulation based on ab initio and variable soft sphere model in ratchet-shaped microchannels[J]. International Journal of Heat and Mass Transfer, 2023, 206: 123957.
[12] SUGIMOTO H, SHINOTOU A.Gas separator with the thermal transpiration in a rarefied gas[C]//27Th International Symposium on Rarefied Gas Dynamics. AIP Conference Proceedings, 2011, 1333: 784-789.
[13] KOSYANCHUK V, KOVALEV V, YAKUNCHIKOV A.Multiscale modeling of a gas separation device based on effect of thermal transpiration in the membrane[J]. Separation and Purification Technology, 2017, 180: 58-68.
[14] SUGIMOTO H, KAWAKAMI S, MORIUCHI K.Rarefied gas flows induced through a pair of parallel meshes with different temperatures[C]// Proceedings of the 26th International Symposium on Rarefied Gas Dynamics. AIP Conference Proceedings, 2008, 1084: 1021-1026.
[15] YAKUNCHIKOV A, KOSYANCHUK V.Numerical investigation of gas separation in the system of filaments with different temperatures[J]. International Journal of Heat and Mass Transfer, 2019, 138: 144-151.
[16] BAIER T, HARDT S.Gas separation in a Knudsen pump inspired by a Crookes radiometer[J]. Microfluidics and Nanofluidics, 2020, 24(6): 41.
[17] LOTFIAN A, ROOHI E.Binary gas mixtures separation using microscale radiometric pumps[J]. International Communications in Heat and Mass Transfer, 2021,121:105061.
[18] WHITE C, BORG M K, SCANLON T J, et al.dsmcFoam+: an OpenFOAM based direct simulation Monte Carlo solver[J]. Computer Physics Communications, 2018, 224: 22-43.
[19] BIRD G A.Molecular gas dynamics and the direct simulation of gas flows [M]. Oxford: Clarendon Press, 2003.
[20] 沈青. 稀薄气体动力学[M]. 北京:国防工业出版社, 2003.
[21] AKHLAGHI H, ROOHI E.Generalized description of the Knudsen layer thickness in rarefied gas flows[J]. Physics of Fluids, 2021, 33(6): 61701.
[22] ROOHI E, STEFANOV S.Collision partner selection schemes in DSMC: From micro/nano flows to hypersonic flows[J]. Physics Reports, 2016, 656: 1-38.
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李得天, 成永军, 张虎忠, 孙雯君, 王永军, 孙 健, 李 刚, 裴晓强. 碳纳米管场发射阴极制备及其应用研究[J]. 真空, 2018, 55(5): 1 -9 .
[2] 周彬彬, 张 建, 何剑锋, 董长昆. 基于 CVD 直接生长法的碳纳米管场发射阴极[J]. 真空, 2018, 55(5): 10 -14 .
[3] 柴晓彤, 汪 亮, 王永庆, 刘明昆, 刘星洲, 干蜀毅. 基于 STM32F103 单片机的单泵运行参数数据采集系统[J]. 真空, 2018, 55(5): 15 -18 .
[4] 李民久, 熊 涛, 姜亚南, 贺岩斌, 陈庆川. 基于双管正激式变换器的金属表面去毛刺 20kV 高压脉冲电源[J]. 真空, 2018, 55(5): 19 -24 .
[5] 刘燕文, 孟宪展, 田 宏, 李 芬, 石文奇, 朱 虹, 谷 兵, 王小霞 . 空间行波管极高真空的获得与测量[J]. 真空, 2018, 55(5): 25 -28 .
[6] 徐法俭, 王海雷, 赵彩霞, 黄志婷. 化学气体真空 - 压缩回收系统在环境工程中应用研究[J]. 真空, 2018, 55(5): 29 -33 .
[7] 谢元华, 韩 进, 张志军, 徐成海. 真空输送的现状与发展趋势探讨(五)[J]. 真空, 2018, 55(5): 34 -37 .
[8] 孙立志, 闫荣鑫, 李天野, 贾瑞金, 李 征, 孙立臣, 王 勇, 王 健, 张 强. 放样氙气在大型收集室内分布规律研究[J]. 真空, 2018, 55(5): 38 -41 .
[9] 黄 思 , 王学谦 , 莫宇石 , 张展发 , 应 冰 . 液环压缩机性能相似定律的实验研究[J]. 真空, 2018, 55(5): 42 -45 .
[10] 常振东, 牟仁德, 何利民, 黄光宏, 李建平. EB-PVD 制备热障涂层的反射光谱特性研究[J]. 真空, 2018, 55(5): 46 -50 .