欢迎访问沈阳真空杂志社 Email Alert    RSS服务

真空 ›› 2024, Vol. 61 ›› Issue (4): 35-41.doi: 10.13385/j.cnki.vacuum.2024.04.07

• 真空获得与设备 • 上一篇    下一篇

脉管制冷机的研究进展及其仿真优化*

姜远镇1, 邓家良1,2, 韩雨松1, 武义锋1,2   

  1. 1.安徽万瑞冷电科技有限公司,安徽 合肥 230088;
    2.中国电子科技集团第十六研究所,安徽 合肥 230088
  • 收稿日期:2023-12-18 出版日期:2024-07-25 发布日期:2024-07-29
  • 作者简介:姜远镇(1995-),男,辽宁省大连市人,硕士,工程师。
  • 基金资助:
    * 合肥市高新技术专项(GJ2022GX27)

Latest Research Progress and Simulation Optimization of Pulse Tube Cryocooler

JIANG Yuan-zhen1, DENG Jia-liang1,2, HAN Yu-song1, WU Yi-feng1,2   

  1. 1. Vacre Technology Co., Ltd., Hefei, 230088, China;
    2. China Electronic Technology Corporation 16th Institute, Hefei 230088, China
  • Received:2023-12-18 Online:2024-07-25 Published:2024-07-29

摘要: 脉管制冷机具有高稳定性、持久运行和低振动等特性,符合高真空设备低温泵对冷源的要求,在低温真空泵领域的关注度越来越高。本文首先介绍了脉管制冷机的基本原理和分类,然后按照驱动方式总结了不同脉管制冷机的最新研制进展,最后重点分析了不同仿真方法在脉管制冷机研发和优化过程中的实际应用。

关键词: 低温真空泵, 脉管制冷机, 仿真优化

Abstract: Higher stability, longer operating time and low vibration characteristics of pulse tube cryocooler (PTC) meet the requirements of high vacuum equipment and low-temperature pumps for cold sources, so PTC is increasingly popular in the field of low-temperature vacuum pumps. First, the basic principle and classification of PTC is introduced. And then, the latest development progress of PTC is summarized according to the driving mode. Finally, the advantages and disadvantages of different simulation methods in the development and optimization process are analyzed emphatically.

Key words: cryopump, pulse tube cryocooler, simulation optimization

中图分类号:  TB752+.53

[1] ZHU S, KAKIMI Y, MATSUBARA Y.Investigation of active-buffer pulse tube refrigerator[J]. Cryogenics, 1997, 37(8): 461-471.
[2] 陈国邦, 汤珂. 小型低温制冷机原理[M]. 北京:科学出版社, 2010.
[3] MIKULIN E I, TARASOV A A, SHKREBYONOCK M P.Low-temperature expansion pulse tubes[J]. Advances in Cryogenic Engineering, 1984, 29: 629-637.
[4] RADEBAUGH R, LOUIE B, SMITH D R, et al.A comparison of three types of pulse tube refrigerators- new methods for reaching 60 K[J]. Advances in Cryogenic Engineering, 1986, 31: 779-789.
[5] ZHU S W, WU P Y, CHEN Z Q.Double inlet pulse tube refrigerators: an important improvement[J]. Cryogenics, 1990, 30(6): 514-520.
[6] RAVEX A, ROLLAND P, LIANG J, et al.Experimental study and modelisation of a pulse tube refrigerator[J]. Cryogenics, 1992, 32: 9-12.
[7] MIKHEEV V A, MASUHARA N, WAGNER T, et al.A miniature pulse tube refrigerator for temperatures below 100 K[J]. Cryogenics, 1994, 34(2): 167-168.
[8] 何永林. 高效率G-M型脉管制冷机的理论与实验研究[D]. 杭州:浙江大学, 2007.
[9] LIU B Q, JIANG Z H, YING K K, et al.A high efficiency Stirling/pulse tube hybrid cryocooler operating at 35K/85K[J]. Cryogenics, 2019, 101: 137-140.
[10] WU W T, CUI X Y, LIU S S, et al.Cooling performance improvement of a two-stage pulse tube cryocooler with er-plated screen as regenerator material[J]. International Journal of Refrigeration, 2021, 131: 615-622.
[11] YOU X K, QIU L M, ZHANG H, et al.Study on the impedance characteristics of a high-capacity pulse tube cryocooler-ScienceDirect[J]. Energy Reports, 2022,8: 2210-2218.
[12] JIN T, CHEN G B, SHEN Y.A thermoacoustically driven pulse tube refrigerator capable of working below 120 K[J]. Cryogenics, 2001, 41(8): 595-601.
[13] TANG K, CHEN G B, JIN T, et al.Influence of resonance tube length on performance of thermoacoustically driven pulse tube refrigerator[J]. Cryogenics, 2005, 45(3): 185-191.
[14] 胡江风, 胡剑英, 徐静远, 等. 谐振子耦合型热声驱动脉管制冷机研究[J]. 制冷学报, 2018, 39(1): 56-63.
[15] DESAI S, DESAI K P, NAIK H B, et al.Performance prediction of ptr for different pressure waveforms[J]. Proceedings of the American Institute of Physics, 2008, 985(1): 1691-1698.
[16] ZHU S W, NOGAWA M, INOUE T.Analysis of DC gas flow in GM type double inlet pulse tube refrigerators[J]. Cryogenics, 2009, 49(2): 66-71.
[17] 王超, 邱利民, 董文庆, 等. G-M型脉管制冷机电磁阀和旋转阀配气系统的比较实验研究[J]. 低温工程,2010(5): 6-10.
[18] 程章展, 甘智华, 邱利民, 等. 20 K温区GM型单级脉管制冷机初步实验[J]. 低温工程, 2004(3): 9-12.
[19] 蒋彦龙, 陈国邦, 甘智华, 等. 高性能G-M型单级脉管制冷机直流抑制和制冷特性实验研究[J]. 低温物理学报, 2004, 26(2): 112-119.
[20] 刘东立, 甘智华. 单级G-M 型小孔脉管制冷机 Sage 建模[J]. 低温工程, 2015(5): 8-12.
[21] SHIRAISHI M, MURAKAMI M.Visualization of oscillating flow in a double-inlet pulse tube refrigerator with a diaphragm inserted in a bypass-tube[J]. Cryogenics, 2012, 52(7): 410-415.
[22] 唐立, 邱利民, 何永林, 等. 单级G-M型脉管制冷机回热器性能[J]. 低温工程, 2006(4): 1-4.
[23] 孙贺, 邱利民, 甘智华, 等. 大功率单级脉管制冷机回热器性能模拟与实验[J]. 低温工程, 2008(6): 13-17.
[24] 李卓裴, 邱利民, 刘国军, 等. 热声发动机驱动的脉管制冷机模拟及实验研究[J]. 浙江大学学报(工学版), 2009, 43(8): 1458-1462.
[25] 王禹贺, 祁影霞, 车闫瑾, 等. 基本型脉管内气体振荡制冷机理的分子动力学模拟[J]. 制冷学报, 2019, 40(1): 71-78.
[26] GIFFORD W E, LONGSWORTH R C.Surface Heat Pumping[J]. Advances in Cryogenic Engineering, 1966, 11: 171-179.
[27] 陶杰, 祁影霞, 刘雅丽, 等. 基于分子动力学的充气压力影响脉管制冷机性能机理研究[J]. 热能动力工程, 2022, 37(3): 9-14.
[28] 蒋燕阳. 20K深低温双级脉管制冷机关键技术研究 [D]. 上海:中国科学院大学(中国科学院上海技术物理研究所), 2017.
[29] LIU S S, JIANG Z H, DING L, et al.Effects of cold‐end temperature and heat load on the cooling characteristics of a pulse tube refrigerator. Energy Science & Engineering. 2020, 8(3): 731-9.
[30] 王仕越. 小型脉冲管低温制冷机相位分析与性能优化[D]. 上海:上海交通大学, 2012.
[31] 王海敏, 戴巍, 王晓涛, 等. 20K温区单级斯特林型脉管制冷机研究[J]. 低温工程, 2013, (1): 1-6.
[32] KIM K, ZHI X Q, QIU L M, et al.Numerical analysis of different valve effects on the cooling performance of a two-stage GM type pulse tube cryocooler[J]. International Journal of Refrigeration, 2017, 77: 1-10.
[33] FANG K, NAKANO K, LIN X G, et al.Investigation on numerical optimization method for high capacity two-stage 4 K pulse tube cryocooler[J]. IOP Conference Series: Materials Science and Engineering, 2019, 502(1): 012040.
[34] 李子木, 栾明凯, 曹强, 等. 液氮温区脉管制冷机中的直流影响机理研究[J]. 制冷技术, 2019, 39(5): 1-8.
[35] SCHMIDT J A, SCHMIDT B, DIETZEL D, et al.Improvement strategies for a low input power 4 K pulse tube cooler: Experiments and sage simulations[J]. Cryogenics, 2022, 122: 103417.
[36] HOZUMI Y, SHIRAISHI M, MURAKAMI M.Simulation of thermodynamics aspects about pulse tube refrigerator[J]. American Institute of Physics, 2004,710(1): 1500-1507.
[37] CHA J S, GHIAASIAAN S M, DESAI P V, et al.Multi-dimensional flow effects in pulse tube refrigerators[J]. Cryogenics, 2006, 46(9): 658-665.
[38] 何雅玲, 高凡, 陶于兵, 等. 脉管制冷机的整机数值模拟[J]. 西安交通大学学报, 2009, 43(3): 1-9.
[39] BANJARE Y P, SAHOO R K, SARANGI S K.CFD simulation and experimental validation of a GM type double inlet pulse tube refrigerator[J]. Cryogenics, 2010, 50(4): 271-280.
[40] DAI Q T, CHEN Y Y, YANG L W.CFD investigation on characteristics of oscillating flow and heat transfer in 3D pulse tube[J]. International Journal of Heat & Mass Transfer, 2015, 84: 401-408.
[41] PANG X M, WANG H, WANG X T, et al.Numerical investigation on the influence of radial thermal conduction in a co-axial pulse tube cooler[J]. International Journal of Refrigeration, 2022, 139: 128-135.
[1] 孙鲁尧, 陈光奇. 活性炭低温低压吸附等温线试验研究[J]. 真空, 2020, 57(6): 69-74.
[2] 曾环, 邓家良, 孙志和. 250mm口径低温泵设计*[J]. 真空, 2020, 57(2): 13-16.
[3] 余彦飞, 李晓刚, 胡湘娥, 陈进文, 陈洁心. 基于流导法的G-M制冷机低温泵抽速测试与分析*[J]. 真空, 2024, 61(3): 20-25.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李得天, 成永军, 张虎忠, 孙雯君, 王永军, 孙 健, 李 刚, 裴晓强. 碳纳米管场发射阴极制备及其应用研究[J]. 真空, 2018, 55(5): 1 -9 .
[2] 周彬彬, 张 建, 何剑锋, 董长昆. 基于 CVD 直接生长法的碳纳米管场发射阴极[J]. 真空, 2018, 55(5): 10 -14 .
[3] 柴晓彤, 汪 亮, 王永庆, 刘明昆, 刘星洲, 干蜀毅. 基于 STM32F103 单片机的单泵运行参数数据采集系统[J]. 真空, 2018, 55(5): 15 -18 .
[4] 李民久, 熊 涛, 姜亚南, 贺岩斌, 陈庆川. 基于双管正激式变换器的金属表面去毛刺 20kV 高压脉冲电源[J]. 真空, 2018, 55(5): 19 -24 .
[5] 刘燕文, 孟宪展, 田 宏, 李 芬, 石文奇, 朱 虹, 谷 兵, 王小霞 . 空间行波管极高真空的获得与测量[J]. 真空, 2018, 55(5): 25 -28 .
[6] 徐法俭, 王海雷, 赵彩霞, 黄志婷. 化学气体真空 - 压缩回收系统在环境工程中应用研究[J]. 真空, 2018, 55(5): 29 -33 .
[7] 谢元华, 韩 进, 张志军, 徐成海. 真空输送的现状与发展趋势探讨(五)[J]. 真空, 2018, 55(5): 34 -37 .
[8] 孙立志, 闫荣鑫, 李天野, 贾瑞金, 李 征, 孙立臣, 王 勇, 王 健, 张 强. 放样氙气在大型收集室内分布规律研究[J]. 真空, 2018, 55(5): 38 -41 .
[9] 黄 思 , 王学谦 , 莫宇石 , 张展发 , 应 冰 . 液环压缩机性能相似定律的实验研究[J]. 真空, 2018, 55(5): 42 -45 .
[10] 常振东, 牟仁德, 何利民, 黄光宏, 李建平. EB-PVD 制备热障涂层的反射光谱特性研究[J]. 真空, 2018, 55(5): 46 -50 .