欢迎访问沈阳真空杂志社 Email Alert    RSS服务

真空 ›› 2025, Vol. 62 ›› Issue (1): 49-56.doi: 10.13385/j.cnki.vacuum.2025.01.08

• 真空应用 • 上一篇    下一篇

纳米SiO2气凝胶复合芯材真空绝热板制备与性能研究*

刘卫东1, 靳海2, 詹衡2, 苗济蘩1, 陈舟1   

  1. 1.南京工业大学 机械与动力工程学院,江苏 南京 211816;
    2.山西金驹煤电化有限责任公司,山西 晋城 048000
  • 收稿日期:2024-05-29 出版日期:2025-01-25 发布日期:2025-02-10
  • 通讯作者: 陈舟,副教授。
  • 作者简介:刘卫东(1996-),男,安徽省阜阳市人,硕士研究生。
  • 基金资助:
    * 安徽省重点研发计划(2022a05020064)

Preparation and Performance Studies of Nano-SiO2 Aerogel Composite Core Vacuum Insulating Panels

LIU Weidong1, JIN Hai2, ZHAN Heng2, MIAO Jifan1, CHEN Zhou1   

  1. 1. School of Mechanical and Power Engineering, Nanjing Tech University, Nanjing 211816, China;
    2. Shanxi Jinju Coal Electrochemical Co., Ltd., Jincheng 048000, China
  • Received:2024-05-29 Online:2025-01-25 Published:2025-02-10

摘要: 以SiO2气凝胶和玻璃纤维短切丝为主要原料,分别采用湿法和干法成型技术制备了SiO2气凝胶基复合芯材,然后采用真空封装技术得到纳米SiO2气凝胶复合芯材真空绝热板(VIP)。研究了不同含量(质量分数)SiO2气凝胶复合芯材的微观结构,对比分析了两种工艺对VIP在热物理性能上的差异。结果表明:SiO2气凝胶的加入使短切丝纤维芯材的三维网状结构变得紧凑,但气凝胶含量过高会导致气凝胶与纤维结合性变差;随着SiO2气凝胶含量的增加,复合芯材的密度下降,真空绝热板的压缩率和回弹率也呈下降趋势;湿法工艺制备的复合芯材,气凝胶质量分数为35%时均匀性稍差,干法工艺制备的复合芯材厚度变化均≤0.04 mm,均匀性较好;湿法工艺制备的复合芯材VIP导热系数随SiO2气凝胶含量增加而显著上升,而干法工艺下VIP导热系数增幅相对较小,导热系数更为稳定。

关键词: SiO2气凝胶, 真空绝热板, 导热系数, 物理性能

Abstract: The SiO2 aerogels based composite core materials were prepared by wet and dry molding techniques using SiO2 aerogels and glass fiber short cutting as the main raw materials, and then the nano SiO2 aerogels composite core vacuum insulation panels (VIP) were obtained by vacuum packaging technology. The microstructure of composite core materials with different SiO2 aerogels contents (mass fraction) was studied, and the differences of the two processes on the thermophysical properties of VIP were compared and analyzed. The results show that the addition of SiO2 aerogel makes the three-dimensional network structure of the short-cut fiber core become compact, but the high content of aerogel will lead to poor adhesion between the aerogel and the fiber. With the increase of SiO2 aerogel content, the density of composite core material decreases, and the compression rate and rebound rate of vacuum insulation panel also decrease. The homogeneity of composite core material prepared by wet process is slightly poor when the aerogel mass fraction is 35%, while the thickness of composite core material prepared by dry process is less than 0.04 mm, and the homogeneity is better. The thermal conductivity of the composite core VIP prepared by the wet process increases significantly with the increase of SiO2 aerogel content, while the VIP thermal conductivity increases relatively small under the dry process, and the thermal conductivity is more stable.

Key words: SiO2 aerogel, vacuum insulation panel, thermal conductivity, physical property

中图分类号:  TB79

[1] 梁玉莹. 气凝胶真空绝热板的隔热性能和寿命研究[D]. 广州:广州大学,2018.
[2] 吴会军,胡焕仪,陈奇良等.通过控制醇凝胶强度常压制备低密度疏水SiO2气凝胶[J].化工学报,2015,66(10):4281-4287.
[3] KISTLER S S, CALDWELL A G.Thermal conductivity of silica aerogel[J]. Industrial & Engineering Chemistry, 1934,26(6) : 658-662.
[4] AL ZAIDI I K, DEMIREL B, ATIS C D, et al. Investigation of mechanical and thermal properties of nano SiO2/hydrophobic silica aerogel co-doped concrete with thermal insulation properties[J]. Structural Concrete, 2020, 21(3): 1123-1133.
[5] BERARDI U.The benefits of using aerogel-enhanced systems in building retrofits[J]. Energy Procedia, 2017, 134: 626-635.
[6] WAGH P B, BEGAG R, PAJONK G M, et al.Comparison of some physical properties of silica aerogel monoliths synthesized by different precursors[J]. Materials Chemistry and Physics, 1999, 57(3): 214-218.
[7] GURAV J L, JUNG I K, PARK H H, et al.Silica aerogel: synthesis and applications[J]. Journal of Nanomaterials, 2010, 2010: 409310.
[8] WEI W, HU H H, YIN S J, et al.Rational fabrication of chitosan/ alginate/silica ternary aerogel beads adsorbent with free separation[J]. Micro & Nano Letters, 2019, 14(2):142-145.
[9] ADHIKARY S K, ASHISH D K, RUDŽIONIS Ž. Aerogel based thermal insulating cementitious composites: a review[J]. Energy and Buildings, 2021, 245: 111058.
[10] GAO T, JELLE B P, GUSTAVSEN A, et al.Aerogel-incorporated concrete: an experimental study[J]. Construction and Building Materials, 2014, 52: 130-136.
[11] 余倩华. 玻璃纤维/气相二氧化硅复合芯材真空绝热板性能研究[D]. 南京: 南京航空航天大学,2021.
[12] WANG H, WU H J, DING Y F, et al.Feasibility and optimization of aerogel glazing system for building energy efficiency in different climates[J]. International Journal of Low-Carbon Technologies, 2015, 10(4): 412-419.
[13] MAZROUEI-SEBDANI Z, BEGUM H, SCHOENWALD S, et al.A review on silica aerogel-based materials for acoustic applications[J]. Journal of Non-Crystalline Solids, 2021, 562: 120770.
[14] AHMAD S, AHMAD S, SHEIKH J N.Silica centered aerogels as advanced functional material and their applications: a review[J]. Journal of Non-Crystalline Solids, 2023, 611: 122322.
[15] LIU H, XU G S, LI H Y, et al.Design of hollow glass fiber/silica aerogel composites for high temperature thermal insulation applications[J]. Thermal Science and Engineering Progress, 2024, 48: 102388.
[16] KIM G S, HYUN S H.Synthesis of window glazing coated with silica aerogel films via ambient drying[J]. Journal of Non-Crystalline Solids, 2003, 320(1-3): 125-132.
[17] REIM M, REICHENAUER G, KÖRNER W, et al. Silica-aerogel granulate-structural, optical and thermal properties[J]. Journal of Non-Crystalline Solids, 2004,350:358-363.
[18] 徐滕州. 超低导热系数真空绝热板制备及热物理性能研究[D]. 南京:南京航空航天大学,2017.
[19] HE S, WU X Y, ZHANG X Q, et al.Preparation and properties of thermal insulation coating based on silica aerogel[J]. Energy and Buildings, 2023, 298: 113556.
[20] 马佳,沈晓冬,崔升, 等.纤维增强二氧化硅气凝胶复合材料的制备和低温性能[J].材料导报,2015,29(20):43-46.
[21] KUHN J, GLEISSNER T, ARDUINI-SCHUSTER M C, et al. Integration of mineral powders into SiO2 aerogels[J]. Journal of Non-Crystalline Solids, 1995, 186: 291-295.
[22] KOEBEL M, RIGACCI A, ACHARD P.Aerogel-based thermal superinsulation: an overview[J]. Journal of Sol-Gel Science and Technology, 2012, 63: 315-339.
[23] 吕航. 水泥基气凝胶防火涂料性能研究[D]. 广州: 广州大学,2017.
[24] 王盛群. 纳米气凝胶绝热涂料的制备与绝热性能研究[D]. 沈阳:沈阳理工大学, 2021.
[25] LI D, CAO Z W, XIE X Q, et al.Experiments and numerical study on heat transfer of moist silica aerogel composites at high temperatures[J]. Energy Storage and Saving, 2024,3(2): 73-86.
[26] PUTKHAM A I, PUNSOMBUT P, CHAIYACHET Y, et al.Nano-structured porous carbon-silica composite aerogel derived from low-cost kapok fibers and TEOS[J]. Materials Today: Proceedings, 2023, 75: 67-71.
[27] 李承东. 微/纳米孔结构芯材及其真空绝热板的制备与性能研究[D]. 南京:南京航空航天大学,2016.
[28] DI X B, XIE Z G, CHEN J M, et al.Residual gas analysis in vacuum insulation panel (VIP) with glass fiber core and investigation of getter for VIP[J]. Building and Environment, 2020, 186: 107337.
[1] 郭芹良, 武越, 孙娟, 李琼, 魏茜. 结霜现象研究综述*[J]. 真空, 2020, 57(3): 67-72.
[2] 吴乐于. 不同高阻隔复合膜在带有沟槽的真空绝热板上的适用性研究[J]. 真空, 2020, 57(1): 62-66.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李得天, 成永军, 张虎忠, 孙雯君, 王永军, 孙 健, 李 刚, 裴晓强. 碳纳米管场发射阴极制备及其应用研究[J]. 真空, 2018, 55(5): 1 -9 .
[2] 周彬彬, 张 建, 何剑锋, 董长昆. 基于 CVD 直接生长法的碳纳米管场发射阴极[J]. 真空, 2018, 55(5): 10 -14 .
[3] 柴晓彤, 汪 亮, 王永庆, 刘明昆, 刘星洲, 干蜀毅. 基于 STM32F103 单片机的单泵运行参数数据采集系统[J]. 真空, 2018, 55(5): 15 -18 .
[4] 李民久, 熊 涛, 姜亚南, 贺岩斌, 陈庆川. 基于双管正激式变换器的金属表面去毛刺 20kV 高压脉冲电源[J]. 真空, 2018, 55(5): 19 -24 .
[5] 刘燕文, 孟宪展, 田 宏, 李 芬, 石文奇, 朱 虹, 谷 兵, 王小霞 . 空间行波管极高真空的获得与测量[J]. 真空, 2018, 55(5): 25 -28 .
[6] 徐法俭, 王海雷, 赵彩霞, 黄志婷. 化学气体真空 - 压缩回收系统在环境工程中应用研究[J]. 真空, 2018, 55(5): 29 -33 .
[7] 谢元华, 韩 进, 张志军, 徐成海. 真空输送的现状与发展趋势探讨(五)[J]. 真空, 2018, 55(5): 34 -37 .
[8] 孙立志, 闫荣鑫, 李天野, 贾瑞金, 李 征, 孙立臣, 王 勇, 王 健, 张 强. 放样氙气在大型收集室内分布规律研究[J]. 真空, 2018, 55(5): 38 -41 .
[9] 黄 思 , 王学谦 , 莫宇石 , 张展发 , 应 冰 . 液环压缩机性能相似定律的实验研究[J]. 真空, 2018, 55(5): 42 -45 .
[10] 常振东, 牟仁德, 何利民, 黄光宏, 李建平. EB-PVD 制备热障涂层的反射光谱特性研究[J]. 真空, 2018, 55(5): 46 -50 .